www.cometsystem.cz

Návod k použití

W0710 W0711 W0741 W3710 W3710 W3721 W3745 W4710 W5714 W7710

Snímače s WiFi komunikací

© Copyright: COMET SYSTEM, s.r.o.

Tento návod k obsluze je zakázáno kopírovat a provádět v něm změny jakékoliv povahy bez výslovného souhlasu firmy COMET SYSTEM, s.r.o. Všechna práva vyhrazena.

Firma COMET SYSTEM, s.r.o. provádí neustálý vývoj a vylepšování svých produktů. Proto si vyhrazuje právo provést technické změny na zařízení / výrobku bez předchozího upozornění. Tiskové chyby vyhrazeny.

Tento návod k použití je společný pro několik různých modelů přístrojů. Podpora funkcí u jednotlivých modelů je závislá na typu měřených veličin. Screenshoty a grafická vyobrazení se mohou lišit dle modulu produktu a verze operačního systému na počítací.

Kontakt na výrobce tohoto zařízení:

COMET SYSTEM, s.r.o. Bezručova 2901 756 61 Rožnov pod Radhoštěm Česká republika www.cometsystem.cz

Obsah

ÚVOD	5
BEZPEČNOSTNÍ OPATŘENÍ A ZAKÁZANÉ MANIPULACE	8
INSTALACE	9
Instalace přístroje	9
Zprovoznění a první nastavení přístroje	11
FUNKCE	13
LCD displej	
Klávesnice	15
WiFi módy	16
Hlavní stránka	16
MODELY WIFI SNÍMAČŮ	18
NASTAVENÍ PŘÍSTROJE	23
Konvence	
Obecné nastavení	24
Nastavení měření	
Nastavení kanalu	28 22
Síťová nastavení	
Komunikační protokoly	
Nastavení Cloud protokolu	
KOMUNIKAČNÍ PROTOKOLY	
Modbus TCP	
Cloud protokol – JSON	
JSON a XML přes http server	55
SNMP protokol	57
ŘEŠENÍ PROBLÉMŮ	59
Tovární nastavení	59
Zapomenuté administrátorské heslo	60
Jak zjistit IP adresu přístroje	60
Jak použít nové připojenou Digi sondu	
Chybove kody na kanalech	60 62
Symbol vykloliku na LCD displeji	02 63
Není možné zapnout přístroi	
Přístroj se neustále restartuje	
Problémy s přesností měření	63
Problémy s připojením do WiFi sítě	64
Problém s připojením do sítě WPA2-EAP	64
Problémy se silou WIFI signálu	65
DOPORUCENI PRO PROVOZ A UDRZBU	67
Provoz přístroje v různých aplikacích	67

Doporučení pro metrologické kontroly	68
Doporučení pro pravidelné kontroly.	68
Doporučení pro IT bezpečnost	69
Aktualizace firmware	70
Technická podpora a servis	70
TECHNICKÉ SPECIFIKACE	71
Napájení	71
Obecné parametry	71
Rádiová část	71
Komunikační protokoly	72
Parametry vstupů přístrojů	73
Provozní a skladovací podmínky	81
Mechanické vlastnosti	81
Vyřazení z provozu	82
Prohlášení o shodě	82
DODATKY	83
HISTORIE VERZÍ DOKUMENTU	95

Úvod

WiFi snímače jsou autonomní zařízení pro měření, zpracování a alarmování vybraných fyzikálních veličin. Snímače podporují měření teploty, relativní vlhkosti, barometrického tlaku a koncentrace CO₂. Typy vstupů a měřící rozsahy závisí na modelu přístroje a nemohou být změněny uživatelem. Přístroje komunikují pomocí bezdrátové WiFi sítě. Přístroje musí být napájeny z externího adaptéru který je součástí standardní dodávky.

Klíčové funkce:

- Měření z externích a interních snímačů teploty, relativní vlhkosti, barometrického tlaku a koncentrace CO₂. Z měřených hodnot relativní vlhkosti a teploty může být vypočtena a zobrazena další vlhkostní veličina, jako např. rosný bod.
- Hlídání a zasílaní alarmů, pokud měřené hodnoty dosáhnou přednastavené hranice. Jsou podarovány dva nezávislé alarmové limity pro každou měřenou veličinu. Směr alarmové hodnoty je volitelný.
- Akustická a optická LED signalizace při alarmu.
- Měřené hodnoty jsou zobrazeny na velkém podsvíceném LCD displeji.
- Přístroj ukládá minimální a maximální hodnotu každé měřené veličiny od okamžiku jeho zapnutí. Maximální a minimální hodnoty mohou být smazány uživatelem.
- Komunikace prostřednictvím 2,4GHz WiFi sítě. Přístroj tak může využívat síťovou infrastrukturu, která je již v místě instalace k dispozici.
- Přístroj je vybaven USB-C konektorem, který je využíván jak pro napájení, tak pro uživatelské nastavení přístroje.
- Měřené hodnoty lze zobrazit na webových stránkách přístroje. Dále je možná nechat hodnoty zasílat do záznamového systému COMET Cloud nebo COMET Database.
- Měřené hodnoty je možné číst pomocí systémů od třetí strany s využitím univerzálních komunikačních protokolů JSON, XML, Modbus TCP a SNMP.
- Přístroj má integrovanou zálohovanou paměť. Tato paměť je použita pro ukládání hodnot při výpadku WiFi nebo při výpadku připojení do Cloudu.
- Přístroj dokáže informovat o alarmových stavech odesláním e-mailu přímo ze zařízení.
- Přístroj je možné nastavit přes web stránky jak z počítače, tak chytrého telefonu. Výchozí nastavení je realizováno pomocí módu přístupového bodu (AP mód).
- Součástí dodávky přístroje je Kalibrační list, který obsahuje náležitosti dle požadavků normy EN ISO/IEC 17025.

Schematický nákres WiFi snímače:

Rozměry:

Schematický nákres WiFi snímače s SMA anténním konektorem (Wx7xxQ):

Externí vstupy

Parametry antény, kterou je možné využít u přístroje s modifikací Wx7xxQ lze nalézt v *Technické specifikaci*. Tato anténa není součástí standardní dodávky.

Rozměry přístroje s modifikací Wx7xxQ:

Bezpečnostní opatření a zakázané manipulace

Před uvedením přístroje do provozu si pozorně přečtěte následující bezpečnostní pokyny a v průběhu jeho používání je dodržujte!

Instalace, zprovoznění a údržba musí být prováděna pouze kvalifikovanou obsluhou dle příslušných norem a zákonných regulací.

- Legislativní podmínky. Součástí zařízení je rádiový vysílač pracující v nelicenčním WiFi pásmu. Použitá frekvence a vysílací výkon jsou uvedeny v technické specifikaci. Použité pásmo a vysílací výkony jsou nastaveny pro využití v EU státech. Pokud chcete využít přístroj v jiném místě, před jeho zapnutím se ujistěte, zda je přístroj možné legálně použít.
- Elektromagnetické rušení. Nepoužívejte přístroj v místech, kde je omezeno používání mobilních telefonů, například v blízkosti citlivých lékařských přístrojů, v letadle nebo v místech, kde probíhají trhací práce.
- Provozní a skladovací podmínky. Dodržujte povolené skladovací a provozní podmínky uvedené v *technických parametrech*. Nikdy přístroj nevystavujte přímému záření tepelných zdrojů včetně slunečního. Neinstalujte zařízení výše než 2 m nad podlahu, abyste předešli riziku zranění v případě pádu zařízení z výšky.
- Nebezpečí požáru a výbuchu. Je zakázáno používat WiFi snímač v nebezpečném prostředí, zejména v prostředí s nebezpečím výbuchu hořlavých plynů, par a prachů.
- Kryt přístroje. Je zakázáno provozovat přístroj bez krytu.
- **Agresivní prostředí.** Nevystavujte přístroj agresivnímu prostředí, chemikáliím nebo mechanickým rázům. K čištění používejte měkkou tkaninu. Nepoužívejte rozpouštědla nebo jiná agresivní činidla.
- Závady a servis. Nepokoušejte se zařízení sami opravit. Jakékoliv opravy smí provádět pouze proškolený servis. Pokud přístroj vykazuje neobvyklé chování, odpojte napájení přístroje. Kontaktujte distributora, od něhož jste přístroj zakoupili.
- Ochrana před vodou a prachem. Přístroj nemá ochranu proti vniknutí vody nebo prachu. Neprovozujete přístroj v prostorách, kde hrozí poškození přístroje vniknutím vody či prachu.
- Provozuschopnost. Přístroj využívá bezdrátovou komunikaci v bezlicenčním pásmu pomocí WiFi sítě. Z tohoto důvodu nemůže být spolehlivost komunikace zaručena za všech okolností. Nikdy nespoléhejte výlučně na bezdrátovou komunikaci u kritických systémů jako jsou záchranné a bezpečnostní systémy. Pamatujte na to, že pro systémy s vysokou funkční bezpečností je nezbytná redundance. Bližší informace lze nalézt např. v IEC 61508.
- Doporučené příslušenství. Používejte pouze výrobcem doporučené příslušenství.

Instalace

Instalace přístroje

- Zvolte správné umístění přístroje ověřte, že prostředí, do kterého bude instalován přístroj, splňuje předepsané provozní podmínky. Neumísťujte přístroj vedle zdrojů elektromagnetického rušení. Přístroj nemá zvýšenou ochranu proti vniknutí vody či prachu. Nepoužívejte přístroj v prostředí, kde lze očekávat takové podmínky.
- **Doporučená pracovní pozice** přístroj by měl být používán v doporučené pracovní poloze. Tato poloha je anténou nahoru.

- Testování síly signálu v místě instalace přístroje dostatečná síla signálu je nezbytná pro správné fungování přístroje. Sílu signálu je možné ověřit pomocí jiného WiFi zařízení, jako je např. mobilní telefon umístěný do předpokládané pozice instalace. Alternativně lze sílu signálu ověřit procedurou popsanou v kapitole *Problémy se sílou WiFi signálu*.
- Upevnění přístroje přístroj je možné přišroubovat přímo na zeď či jiný rovný povrch. Nepřipevňujte přístroj přímo na kovové objekty. Instalační materiál, jako jsou šrouby či hmoždinky nejsou přiloženy. Použijte adekvátní upevňovací materiál pro připevnění přístroje, aby se zabránilo pádu přístroje a potenciálnímu zranění.

 V případě potřeby je možné použít držák na zeď LP100 – tento držák je dostupný jako volitelné příslušenství. Balení držáku LP100 obsahuje instalační materiál (hmoždinky, šrouby), zámek a klíč. Z bezpečnostních důvodů neinstalujte přístroj do vyšší výšky než 2 metry nad podlahu.

- Připojení kabelů a sond připojte k přístroji sondy. Dodržte doporučené pracovní pozice dodaných sond. Nikdy neumísťujte sondy do kabelových žlabů společných se silovými rozvody.
- **Zapnutí napájení** připojte napájení prostřednictvím USB-C kabelu (5 V DC). Kabel a napájecí adaptér jsou součástí dodávky.

Zprovoznění a první nastavení přístroje

 Mód přístupového bodu – nově zakoupený přístroj se chová jako přístupový bod. Tento mód je signalizován symbolem AP na LCD displeji. V případě, že symbol není zobrazen, nebo je zobrazen symbol CL, přepněte ručně přístroj do AP módu pomocí klávesnice dle kapitoly *Klávesnice*.

 Připojení pomocí notebooku či mobilního telefonu k přístupovému bodu – zapněte WiFi v notebooku či mobilním telefonu a připojte se k WiFi síti s názvem WiFiSensor_xxxxxxx. V případě použití mobilního telefonu je doporučeno dočasně vypnout mobilní data. Správné připojení k přístroji je signalizována na LCD displeji symbolem.

 Otevření stránky přístroje ve web prohlížeči – http://192.168.3.1 nebo www.wifisensor.net

• Zahájení nastavení – konfigurace přístroje je zahájena stiskem dlaždice nastavení.

 Zadání SSID a hesla pro WiFi připojení – pro připojení přístroje do WiFi sítě je nezbytné nastavit přihlašovací údaje do WiFi sítě. To je možné provést v menu: Síť / WiFi klient / Vyhledání.

- Další nastavení během úvodního nastavení je možné provést další úpravy konfigurace. Detailní informace k jednotlivým položkám nastavení jsou k dispozici v kapitole Nastavení přístroje.
- Uložení nastavení pro provedení změn nastavení je nezbytné je uložit pomocí položky v menu: Uložit či zrušit.

Chcete uložit konfiguraci?	Zrušit

• **Připojení do WiFi** – po uložení nastavení je přístroj automaticky připojen do WiFi sítě. To je signalizováno symbolem CL na LCD displeji.

 IP adresa přístroje – po připojení do WiFi sítě, je přístroji přiřazena IP adresa. IP adresu je možné zjistit stiskem tlačítka MODE nebo pomocí postupu popsaného v kapitole *Jak zjistit IP adresu přístroje*.

Funkce

LCD displej

WiFi snímače jsou vybaveny LCD displejem pro zobrazení aktuálně měřených hodnot a stavových informací o přístroji. Zobrazení každé z měřených hodnot může být povoleno samostatně. Když je LCD displej v nastavení vypnut a je stisknuto tlačítko na přístroji, LCD displej je dočasně aktivován a krátce se zobrazí stavové informace o přístroji. LCD displej disponuje podsvícením, které lze nastavit do jednoho ze tří módů (vypnuto, trvale zapnuto, nebo dočasná aktivace po stisku tlačítka – podsvícení trvá cca 10 s).

Funkce	Popis
Aktuálně měřené hodnoty	Aktuálně měřené hodnoty na kanálu. Jednotka a pozice na LCD displeji jsou závislé na typu měřené veličiny. Pozici měřené veličiny není možné uživatelsky změnit. Interval přepínaní mezi obrazovkami je nastaven na 4 s.
Alarm na měřené hodnotě	Alarmový stav (Alarm 1 nebo Alarm 2) na měřené hodnotě je signalizován symbolem "zvonečku" u měřené hodnoty.
Alarmový stav ALARM	Signalizace přítomnosti alarmu na přístroji. Alarm může pocházet jak od měřených hodnot, tak i od systémového alarmu. <i>Systémové alarmy</i> fungují jako diagnostika závady na přístroji.

Zabezpečení zapnuto	Tento symbol signalizuje zapnutí zabezpečení přístroje.		
Konfigurační relace	Symbol je zobrazen, pokud aktuálně probíhá konfigurační relace. V jednom okamžiku může probíhat pouze jedna konfigurační relace. To znamená, že další konfigurace z jiných míst je po tuto dobu blokována.		
Připojení do Cloudu	Probíhá c	Probíhá odesílaní dat přes Cloud protokol.	
Akustika aktivní	Akustická signalizace je právě aktivní.		
Akustika ztlumena r	Akustická signalizace byla ztlumena z webu nebo pomocí klávesnice.		
Hodnoty uvnitř paměti MEMORY	V paměti jsou uloženy hodnoty pro Cloud protokol. To znamená, že ne všechny hodnoty byly zaslány do Cloudu.		
RSSI indikátor a mód	AP CL	Přístroj je v klientském módu a probíhá pokus o připojení do WiFi sítě.	
APUL	AP CL	Přístroj je v klientském módu a připojen k WiFi síti. Hodnota RSSI ještě není změřena.	
	AP CL	Připojeno k WiFi síti. Síla signálu je špatná (RSSI < -69 dBm).	
	(CL	Připojeno k WiFi síti. Síla signálu je dostačující.	
	AP CL	Připojeno k WiFi síti. Síla signálu je dobrá (RSSI > -59 dBm).	
	AP CL	Přístroj je v AP módu. Není připojen žádný klient.	
	AP CL	Přístroj je v AP módu. Je připojen alespoň jeden klient.	

Klávesnice

Na přístroji jsou dvě tlačítka MODE a SET. Tyto tlačítka je možné použít k následujícím funkcím:

• Ruční přepnutí mezi klientským módem a režimem přístupového bodu

• Zobrazení IP adresy přístroje

stiskněte tlačítko MODE

• Ztlumení akustické signalizace

• Zobrazení hodnoty RSSI na LCD displeji

WiFi módy

Přístroj podporuje dva módy. Mód přístupového bodu (AP mód), který je určen pro výchozí nastavení a klientský mód. Klientský mód je použit při připojení snímače k infrastrukturnímu přístupovému bodu. Když je SSID pro klientský mód prázdné, přístroj se automaticky přepne do AP módu. Nově zakoupený přístroj má prázdné SSID. V AP módu přístroj podporuje připojení až čtyř klientů (počítač, mobilní telefon). Pokud je potřeba, může být přístroj manuálně, pomocí klávesnice, přepnut z klientského módu do AP módu. Postup je popsán v kapitole *Klávesnice*.

Pokud je přístroj pomocí klávesnice přepnut do AP módu a neprobíhá žádná komunikace s WiFi snímačem, po 10 minutách se přístroj automaticky přepne zpět do klientského módu.

Hlavní stránka

Hlavní stránka umožňuje zobrazení měřených hodnot na jednotlivých kanálech. Po zadání IP adresy přístroje do web prohlížeče, je zobrazena hlavní stránka. Velikost dlaždic se automaticky přizpůsobí rozlišení obrazovky.

Dlaždice	Popis
•	Dlaždice pro zahájení nastavení přístroje.
ţţţ	Menu Pokročilé volby. V tomto menu je možné provést ztlumení akustiky, odeslání testovacího e-mailu a testovací zprávy do Cloudu. Z tohoto menu jsou dále přístupné servisní volby jako detekce Digi sond, aktualizace firmware a stažení diagnostického logu.
(i)	Stránka s informacemi o přístroji. Přes tuto dlaždici je též dostupná stránka knihovna. Ta obsahuje technické informace k jednotlivým komunikačním protokolům.
₽	Odhlášení z přístroje. Dlaždice je dostupná pouze, pokud je zapnuté zabezpečení.

Po kliknutí na kanál se zobrazí stránka s podrobnými údaji o měřené veličině, její aktuální, minimální a maximální hodnoty, včetně odpovídajících časových údajů. Minimální a maximální hodnoty lze nulovat po kliknutí na dlaždici s hodnotami.

Modely WiFi snímačů

V této kapitole naleznete seznam dostupných modelů WiFi snímačů. Rozdíly mezi jednotlivými modely jsou v typu použitých senzorů a jejich měřícím rozsahu. Každá z měřených hodnot má přiřazen jeden vstupní kanál. Uživatel přístroje nemůže změnit rozsah či typ měřené hodnoty.

odpojena od těla přístroje. Je možné zvolit

jednu z vypočtených vlhkostních veličin (rosný bod, absolutní vlhkost, specifická vlhkost, směšovací poměr, specifická entalpie, humidex). Přístroj je určen k montáži přímo do meřeného prostředí.

Jednokanálový teploměr pro externí sondy Pt1000

Tento model dokáže měřit teploty z jedné externí P1000/C sondy. Sonda není součástí dodávky a je ji možné objednat samostatně. Přístroj je vhodné umístit mimo měřené prostředí a do prostředí zavést pouze sondu. Maximální doporučená délka sondy je 15 m.

Čtyřkanálový teploměr pro externí sondy Pt1000

Tento model dokáže měřit teploty až ze čtyř externích P1000/C sond. Sondy nejsou součástí dodávky a je možné je objednat samostatně. Přístroj je vhodné umístit mimo měřené prostředí a do prostředí zavést pouze sondy. Maximální doporučená délka sond je 15 m.

Teploměr-vlhkoměr pro jednu externí sondu

Tento model dokáže měřit teplotu a relativní vlhkost z jedné Digi/E sondy. Sonda není součástí dodávky a je ji možné objednat samostatně. Je možné zvolit iednu z vypočtených vlhkostních veličin (rosný bod, absolutní vlhkost. specifická vlhkost. směšovací poměr, specifická entalpie, humidex). V nabídce jsou sondy s maximální délkou kabelu 15 m. Digi/E sondy obsahují paměť pro uložení kalibračních konstant důvodu jsou zaměnitelné a z toho bez nutnosti překonfigurovat přístroj. Přístroj je vhodné umístit mimo měřené prostředí a do prostředí zavést pouze sondu.

Teploměr-vlhkoměr pro dvě externí sondy

Tento model dokáže měřit teplotu a relativní vlhkost ze dvou Digi/E sond. Sondy nesou součástí dodávky a je možné je objednat samostatně. Je možné zvolit iednu z vypočtených vlhkostních veličin (rosný bod, absolutní vlhkost, specifická vlhkost, směšovací poměr. specifická entalpie. humidex). V nabídce jsou sondy s maximální délkou kabelu 15 m. Digi/E sondy obsahují paměť pro uložení kalibračních konstant a z toho důvodu zaměnitelné isou bez nutnosti překonfigurovat přístroj. Přístroj je vhodné umístit mimo měřené prostředí a do prostředí zavést pouze sondy.

Teploměr-vlhkoměr pro jednu externí sondu a tři další externí sondy Pt1000

Tento model dokáže měřit teplotu a relativní vlhkost z jedné Digi/E sondy a teplotu až ze tří Pt1000/C sond. Sondy nesou součástí dodávky a je možné je objednat samostatně. možné zvolit jednu z vypočtených Je vlhkostních veličin (rosný bod, absolutní vlhkost, specifická vlhkost, směšovací poměr, specifická entalpie, humidex). V nabídce jsou Digi/E sondy s maximální délkou kabelu 15 m. Digi/E sondy obsahují paměť pro uložení kalibračních konstant a z toho důvodu jsou zaměnitelné bez nutnosti překonfigurovat přístroj. Maximální doporučená délka Pt1000/C sond je 15 m. Přístroj je vhodné umístit mimo měřené prostředí a do prostředí zavést pouze sondy.

Kompaktní snímač pro měření teploty, relativní vlhkosti, barometrického tlaku a koncentrace CO₂

Tento model je určen pro měření teploty, relativní vlhkosti. barometrického tlaku a koncentrace CO₂ v okolním vzduchu. Teplota a relativní vlhkost jsou měřeny sondou, která je součástí dodávky. Sondu lze od těla přístroje odpojit. Barometrický tlak a koncentrace CO₂ okolního vzduchu jsou měřeny interními senzory. Je možné zvolit jednu z vypočtených vlhkostních veličin (rosný bod, absolutní vlhkost, specifická vlhkost. směšovací poměr, specifická entalpie, humidex). Barometrický tlak může být měřen jako absolutní tlak nebo může být kompenzován na hladinu moře. Přístroj je určen k montáži přímo do meřeného prostředí.

Kompaktní snímač pro měření teploty, relativní vlhkosti a barometrického tlaku

Tento model je určen pro měření teploty, relativní vlhkosti, barometrického tlaku. Teplota a relativní vlhkost jsou měřeny sondou, která je součástí dodávky. Sondu lze od těla přístroje odpojit. Barometrický tlak je měřen interním senzorem. Je možné zvolit jednu z vypočtených vlhkostních veličin (rosný bod, absolutní vlhkost, specifická směšovací poměr, specifická vlhkost, entalpie, humidex). Barometrický tlak může být měřen jako absolutní tlak nebo může být kompenzován na hladinu moře. Přístroj je určen k montáži přímo do meřeného prostředí.

Kompaktní snímač pro měření koncentrace CO₂

Tento model měří koncentraci CO₂ okolního vzduchu pomocí interního senzoru. Přístroj je určen k montáži přímo do meřeného prostředí.

Nastavení přístroje

Konvence

Konfigurační relace

WiFi snímače mají integrovanou funkci nazývanou konfigurační relace. Jakmile je zahájeno nastavení přístroje, je možné provést změny v nastavení dle potřeby. Veškeré změny nastavení jsou drženy v dočasné paměti. Změny nastavení jsou provedeny až po jejich uložení. Uložení nastavení se provádí v menu pomocí položky Uložit či zrušit. Stejnou položku je též možné použít pro zrušení změn provedených během konfigurační relace.

V jednom okamžiku může být aktivní pouze jedna konfigurační relace. To znamená, že nastavení z jiných míst je blokováno, jakmile je zahájena konfigurační relace. Přístup do nastavení je opět možný, jakmile je předchozí konfigurační relace ukončena. Struktura menu nastavení je popsána v *Dodatku 10*.

Nastavení

Ch	cete uložit kor	nfiguraci?		
	Uložit	Neukládat	Zrušit	

Globálně vypnuté funkce

Některé funkce přístroje je možné globálně povolit či zakázat. Příkladem může být povolení LCD displeje. Displej může být globálně deaktivován v obecném nastavení přístroje. Zobrazení hodnot na LCD displeji může být zakázáno pro každý kanál samostatně. Pokud je požadováno zobrazení měřených hodnot na LCD displeji, LCD displej musí být globálně povolen a musí být též povoleno zobrazení na displeji pro každý kanál. Pokud je funkce globálně vypnuta, dlaždice s nastavením pro kanál jsou zobrazeny světlejší barvou.

Funkce je globálně povolena:

	LCD Disp Zobraz hodn	plej otu na displeji	
Funł	<ce globálně="" je="" td="" z<=""><td>zakázána:</td><td></td></ce>	zakázána:	
	LCD Disp Zobraz hodno	plej otu na displeji	

Obecné nastavení

Obecné nastavení přístroje umožňuje nastavit jméno přístroje, nastavit LCD displej, nastavit čas, zapnout zabezpečení, změnit jazyk přístroje a uložit nastavení do záložního souboru.

LCD displej je možné v případě potřeby deaktivovat. Pokud je displej deaktivován, měřené hodnoty na něm nejsou zobrazeny. Pokud je však stisknuto tlačítko, LCD displej je dočasně aktivován. Podsvícení displeje může být nastaveno do jednoho ze tří módů. Může být trvale zapnuto, trvale vypnuto, nebo může být dočasně zapnuto po stisku tlačítka. Grafické rozhraní přístroje je plně přeloženo do těchto jazyků – angličtina, čeština, holandština, polština, španělština a francouzština.

Nastavení > Obecné Obecné Zpět Zpět do hlavního menu Jméno přístroje Wifi sensor LCD displej Zapnutí displeje přístroje Mód podsvícení -0-Podsvícení trvale zapnuto Datum a čas $(\mathbf{0})$ Změna data a času v přístroji Zabezpečení Г Nastavení zabezpečení přístroje Jazyk Čeština Záloha Uložení nebo obnovení konfigurace přístroje

Datum a čas

Nastavení data a času pro přístroj. WiFi snímače mají vestavěn obvod reálného času napájeného interní baterii. Díky tomu přístroj udržuje aktuální čas i ve vypnutém stavu. Čas může být synchronizován s časem v počítači či mobilním telefonu volbou synchronizace času. Časová zóna (UTC posun) je nastavena po synchronizaci automaticky. Čas v přístroji je aktualizován po uložení nastavení.

Mějte na paměti, že ruční změna časové zóny bez správné změny aktuálního času může způsobit chybné zobrazení historických dat v COMET Cloudu.

Zabezpečení

WiFi snímače mají integrovaný pokročilý systém zabezpečení. Přístroj má tři typy uživatelských účtů – Administrátor, Power user a User. Každý z uživatelů má přiřazena práva dle tabulky níže. Pokud je zapnuto zabezpečení, je nezbytné zadat heslo pro administrátora. Ostatní uživatelé jsou volitelní a mohou být, v případě potřeby, deaktivováni. Při finálním uvedením přístroje do provozu je důrazně doporučeno toto zabezpečení zapnout.

Při zapnutí zabezpečení je web server přístroje automaticky přepnut do https módu. Z tohoto důvodu může být nutné v prohlížeči schválit bezpečnostní výjimku. Takovéto chování je u https při přístupu z lokální sítě běžné. Certifikát COMET root je možné získat na vyžádání.

V případě ztráty administrátorského hesla je nezbytné provést obnovu pomocí *procedury továrního nastavení*.

Nastavení > Obecné > Zabezpečení Zabezpečení		
<	Zpět Zpět na obecné nastavení	
6	Zabezpečení zařízení Zadejte administrátorské heslo pro zapnutí zabezpečení	
6	Power user Povolení účtu Power user	
6	User Povolení účtu User	

Funkce	Administrátor	Power user	User
Ztlumení	Х	Х	Х
Detekce Digi sond	Х	Х	
Restart přístroje	Х	Х	
Testovací zprávy	Х	Х	
Konfigurace přístroje	Х	Х	
Nastavení zabezpečení	Х		
Aktualizace firmware	Х		
Stažení diagnostického logu	Х		

Záloha

Nastavení přístroje může být uloženo do souboru pro pozdější obnovu. Veškeré parametry přístroje jsou uloženy do souboru, s výjimkou nastavení zabezpečení. Mějte na paměti, že síťové parametry jako je IP adresa jsou též uloženy. Pří obnově parametrů do dalšího přístroje to může způsobit konflikt IP adresy, pokud je použita statická IP adresa. V případě použití statické IP adresy je nutné upravit síťové parametry po obnově nastavení ze souboru. Soubor zálohy neobsahuje certifikáty pro WPA2-EAP zabezpečení. Tyto soubory je nutné nahrát odděleně.

Nastavení > Obecné > Záloha Záloha

Nastavení měření

Nastavení související s měřením přístroje. Množství dostupných voleb je závislé na modelu přístroje. Jako jednotku teploty je možné vybrat °C nebo °F. Rosný bod používá stejnou jednotku jako teplota. U přístrojů vybavených měřením relativní vlhkosti je možné zvolit jednu z počítaných vlhkostních veličin – rosný bod, absolutní vlhkost, specifická vlhkost, směšovací poměr, specifická entalpie anebo humidex. U barometrického tlaku je možné zvolit jednu z dostupných jednotek: hPa, kPa, mBar, mmHg, inHg, inH₂O, PSI, nebo oz/in². Položka pro zadání okolního tlaku je dostupná u přístrojů bez integrovaného čidla barometrického tlaku a je využívána pro výpočty specifické vlhkosti, směšovacího poměru a specifické entalpie. U přístrojů s měřením barometrického tlaku je možné nastavit offset tlaku pro kompenzaci tlaku na ekvivalentní tlak na hladinu moře.

Nastavení kanálů

Přístroj je vybaven počtem kanálů dle modelu. Kanály je možné zapnout či vypnout. Pokud je kanál vypnut, měřené hodnoty nejsou zobrazeny na úvodní stránce. Zobrazení hodnot na LCD displeji je možné nastavit samostatně. Jméno kanálu lze změnit dle potřeby. Pokud je jméno kanálu prázdné, přístroj automaticky nastaví jméno kanálu dle zvoleného jazyka. Mějte na paměti, že po změně názvu kanálu jsou nové kanály generovány v COMET Cloud a COMET Database. Každý z kanálů má dva nezávislé alarmové limity, které mohou být nastaveny samostatně. V případě potřeby je možné měřené hodnoty přepočítat pomocí lineární rovnice.

Nastavení alarmů pro kanál

Každý z měřících kanálů umožňuje nastavit dva samostatné alarmové limity. Mód alarmu umožňuje nastavit směr alarmu – nižší než limit, vyšší než limit nebo vypnuto. Hodnota limitu stanovuje práh pro aktivaci alarmu. Alarm je aktivován, pokud je limitní hodnota překročena po stanovenou dobu položkou zpoždění. Alarmový stav zanikne po návratu měřené hodnoty pod limit s nastavenou hysterezí. Při aktivaci alarmu je možné povolit spuštění akustické či optické LED signalizace. Alarm na kanálu je možné volitelně aktivovat při chybě měření na kanálu.

WiFi snímače mají schopnost odeslat varovný e-mail v případě aktivace alarmu na kanálu. Je možné zvolit až čtyři příjemce e-mailů. Adresy příjemců e-mailů jsou konfigurovatelné v *nastavení e-mailu*. Každý z příjemců může být v nastavení alarmu samostatně povolen či zakázán.

Obrázek výše ilustruje, jak nastavení alarmů funguje. Nastaven je alarm 50 % se zpožděním 10 sekund a hysterezí 2 %. Na začátku není alarm aktivní, protože měřená hodnota nedosáhla nastaveného limitu po celou dobu zpoždění. Poté je alarm aktivován, protože měřená hodnota překročila limit po celou dobu nastaveného zpoždění. Alarm trval do doby, než měřená hodnota klesla pod limit s nastavenou hysterezí (50 % - 2 % = 48 %).

Přepočet měřených hodnot

Měřené hodnoty mohou být přepočteny pomocí lineární rovnice. Tuto volbu je možné aktivovat, pokud je potřeba provést korekci měřených hodnot. Povolením přepočtu nejsou ovlivněny kalibrační konstanty přístroje či Digi sondy.

Nastavení alarmů

V nastavení alarmů je možno globálně zakázat, nebo povolit akustickou či optickou LED signalizaci. Dále je možné povolit lokální nebo vzdálené ztlumení akustické signalizace.

Nastavení > Alarmy Alarmy

<	Zpět Zpět do hlavního menu	
	Akustická signalizace Povolení akustiky při alarmu	
ŧ	Lokální ztlumení Ztlumení akustiky stiskem tlačítka	
	Vzdálené ztlumení Ztlumení akustiky pomocí software	
Ϋ́	Optická LED signalizace Povolení LED signalizace pro alarmy	
٩	Systémové alarmy Nastavení systémových alarmů	

Systémové alarmy

Systémové alarmy jsou určeny pro kontrolu správné funkce měřícího řetězce včetně přístroje a sond. Systémové alarmy dokážou upozornit na problém s přístrojem či sondami. Na rozdíl od alarmů u měřených hodnot, které indikují problém technologie monitorované přístrojem. Systémové alarmy mohou být tak určeny jiné skupině osob než alarmy u měřených hodnot.

Přístroj má tři typy systémových alarmů. Systémový alarm od chyby měření na kanálech, od chyby konfigurace a od chyby baterie RTC. Systémový alarm od chyby měření je aktivován, pokud je chybový stav na některém z měřících kanálů přítomen pod dobu stanovenou zpožděním. Pro případ systémového alarmu je možné aktivovat akustickou či optickou LED signalizaci.

Nastavení · Alarmy · Systémové alarmy Systémové alarmy

Síťová nastavení

WiFi klient

Před finálním uvedením WiFi snímačů do provozu je potřeba, aby byl přístroj připojen k infrastrukturnímu přístupovému bodu. Nastavení připojovacích parametrů (SSID a heslo) provedete v menu WiFi klient. Při volbě položky vyhledání je zobrazen seznam WiFi síti v dosahu. Interval vyhledávání WiFi sítí je nastaven na 20 sekund. V případě, že požadovaná WiFi síť není zobrazena v seznamu, je možné zadat SSID ručně. Pokud je položka SSID prázdná, přístroj se automaticky přepne do AP módu a zůstane v tomto módu. Nově zakoupený přístroj má položku SSID prázdnou. Přístroj podporuje následující typy zabezpečení Open, WEP, WPA/WPA2-PSK, WPA2-PMF, WPA3 and WPA2-EAP. Pokud je zvoleno zabezpečení WPA2-EAP, je nutné nastavit ještě další parametry v menu *EAP zabezpečení*.

LAN

Nastavení parametrů LAN pro klientský mód. Je možné nastavit statickou IP adresu nebo IP adresa může být nastavena automaticky prostřednictvím DHCP serveru. Ve výchozím nastavení je zvoleno použití DHCP. V případě, že je vyžadováno použití statické IP adresy, kontaktujte síťového administrátora. Nesprávné nastavení IP adresy, masky podsítě, IP adresy brány či DNS může způsobit problémy se síťovou komunikaci. Ať už u WiFi snímačů tak i ostatních síťových zařízení, pokud dojde ke konfliktu IP adres.

Lokální IP adresu WiFi snímače je možné zjistit způsobem popsaným v kapitole *Řešení problémů*.

AP mód

Mód přístupového bodu (AP mód) je určen pro prvotní nastavení přístroje a jeho připojení do sítě. V případě, že je SSID pro klientský mód prázdné, WiFi snímač je automaticky přepnut do AP módu. WiFi snímač je možné ručně přepnout do AP módu pomocí tlačítek na přístroji. Pokud je přístroj manuálně přepnut do AP módu, a není s přístrojem žádná komunikace po dobu 10 minut, pak se přístroj sám vrátí zpět do klientského módu.

SSID, zabezpečení a číslo kanálu je možné nastavit dle požadavků. Ve výchozím stavu SSID obsahuje sériové číslo přístroje a WiFi zabezpečení není použito. Je doporučeno zapnout zabezpečení pro AP mód, aby se zabránilo neautorizovanému přístupu k přístroji. Číslo WiFi kanálu může být změněno, aby se zabránilo rušení od ostatních WiFi sítí, pokud je potřeba.

Přístroj v AP módu má vlastní DHCP a DNS server. Síťové parametry jsou uvedeny v tabulce níže (tyto parametry nejsou konfigurovatelné z webu přístroje). Pokud je přístroj v AP módu a je konfigurován z mobilního telefonu, je doporučeno deaktivovat mobilní data.

Parametr AP módu	Hodnota
IP adresa WiFi snímače	192.168.3.1
Doména	wifisensor.net
IP adresa brány	192.168.3.1
IP adresa DNS serveru	192.168.3.1
Maska podsítě	255.255.255.0
Rozsah DHCP poolu	192.168.3.2 – 192.168.3.128
Doba zápůjčky pro DHCP	4096 sec

Pokročilé síťové nastavení

Menu pokročilé síťové nastavení umožňuje nastavit další funkce bezdrátového připojení. Mód napájení umožňuje spravovat spotřebu přístroje a odezvu v módu WiFi klient. V módu vysokého výkonu má přístroj vyšší spotřebu a nižší časové odezvy při síťové komunikaci. V normálním módu je spotřeba přístroje nižší. Normální mód je doporučen pro přístroje uvedené v tabulce níže a pro přístroje napájené z externí baterie. Při změně napájecího módu z výchozího normálního módu do módu vysokého výkonu nemusí přístroje splňovat předepsanou přesnost měření.

Záložní WiFi síť umožňuje zadat další SSID a heslo. Tyto parametry jsou pak použity v případě výpadku primární sítě (parametry nastavené v menu WiFi klient). Záložní parametry jsou použity, pokud přístroj není schopen se připojit do primární sítě po dobu 2 minut. Pokud záložní síť též není dostupná, přístroj bude automaticky přepínat mezi primární a záložní sítí s intervalem 2 minut.

EAP zabezpečení umožňuje nastavit parametry pro WPA2 Enterprise zabezpečení (IEEE 802.1X) včetně nahrání potřebných certifikátů.

Identifikace přístroje pro DHCP server v klientském módu je konfigurovatelná přes položku název DHCP klienta. Tato položka je též využívána pro mDNS protokol.

Nastavení > 9 Pokr	iť · Pokročilé síťové nastavení očilé síťové nastavení
<	Zpět Zpět na síť
	Mód napájení Vysoký výkon
	Záložní Wifi síť Nastavení SSID a hesla pro záložní síť
	EAP zabezpečení Nastavení pro IEEE 802.1X
	Název DHCP klienta

Výchozí mód napájení	Model přístroje
Vysoký výkon	W0711, W0741, W3711, W3721, W3745, W5714
Normální výkon	W0710, W3710, W4710, W7710
EAP zabezpečení

WPA2-EAP zabezpečení vyžaduje další nastavení včetně nahrání certifikátu, privátního klíče a CA souboru. Pro bližší informace ohledně EAP zabezpečení kontaktujte síťového administrátora.

EAP metoda umožňuje nastavit způsob autentizace vůči RADIUS serveru. Seznam podporovaných metod je k dispozici v parametrech *Rádiová část*. Položky identita a anonymní identita jsou použity jako identifikace uživatele vůči RADIUS serveru. Nastavení identity je nezbytné i pro EAP-TLS metody. Položka heslo představuje "sdílené tajemství" pro autentizaci uživatele. V případě potřeby je možné deaktivovat autentizaci serveru vůči CA souboru. Certifikát, privátní klíč a CA soubor mohou být nahrány přes položku menu certifikáty.

EAP	zabezpečení	
<	Zpět Zpět na pokročilé síťové nastavení	
	Metoda EAP EAP-TTLS-MSCHAPv2	
2	Identika bob	
	Anonymní identita	
6	Heslo	
Ø	Vypnout autentizaci CA Vypne autentizaci RADIUS serveru	
들	Certifikáty Nahrání certifikátů pro EAP	

Nastavení > Síť > Pokročilé síťové nastavení > EAP zabezpečení

Certifikáty

V menu certifikáty je možné nahrát certifikát, privátní klíč a CA soubor pro WPA2-EAP zabezpečení. Soubory jsou podporovány pouze v DER formátu. Soubory ve formátu PEM nebo p12 podporovány nejsou. Pokud jsou soubory dostupné v jiném formátu, je potřeba je před nahráním do přístroje převést do DER formátu.

CA soubor umožňuje ověřit autenticitu autorizačního serveru. CA soubor je nezbytné nahrát pro všechny EAP metody s výjimkou EAP-FAST metod. Expirace CA souboru je ověřována vůči aktuálnímu času nastavenému v přístroji. Autorizaci serveru vůči nahranému CA souboru je možné deaktivovat. V tomto případě není nutné nahrávat CA soubor. Z bezpečnostního důvodu však není vypnutí autentizace pomocí CA souboru doporučeno.

Klientský certifikát a privátní klíč jsou nezbytné pro EAP-TLS metody. WiFi snímače podporují pouze TLS 1.0 pro EAP-TLS metody (EAP-TTLS-TLS, EAP-PEAP0-TLS, EAP-PEAP1-TLS).

Nastavení > Síť > Pokročilé síťové nastavení > EAP zabezpečení > Certifikáty

Certifikáty

Komunikační protokoly

E-mail

WiFi snímače umožňují odeslat alarmový e-mail přímo prostřednictvím SMTP serveru. Přístroj může zaslat e-mail při vzniku a zániku alarmu. E-mail může být též odeslán při systémovém alarmu s informací o chybě měření nebo jiné hardwarové závadě. Dále je možné odesílat opakované e-maily i opakované alarmové e-maily, pokud alarm na kanálu přetrvává.

V případě použití COMET Cloud nebo COMET Database odesílaní e-mailů přímo z přístroje není nutné. COMET Cloud a COMET Database mají svůj nezávislý systém pro odesílaní alarmových e-mailů.

Aby bylo možné odesílat e-maily z WiFi snímače, je nezbytné správně nakonfigurovat připojení k SMTP serveru. Pro informace o nastavení připojení k SMTP serveru kontaktujte síťového administrátora. Adresa SMTP a port SMTP serveru musí být nastaveny dle použitého serveru. Při použití autentizace musí být nastaveno uživatelské jméno a heslo. Uživatelské jméno je obvykle stejné jako adresa odesílatele e-mailu. Pro použití zabezpečené komunikace je možné zapnout TLS či STARTTLS šifrování. Obvyklé kombinace SMTP portu, šifrování a autentizace jsou v následující tabulce.

Mód SMTP serveru	SMTP port	Nastavení uživatele a hesla	Typ šifrování	
Bez autentizace a šifrová	25	Ne	Ne	
Autentizace bez šifrování	25	Ano	Ne	
Autentizace + šifrování	TLS	465	Ano	TLS
Autentizace + šifrování Start TLS		587	Ano	STARTTLS
Autentizace + šifrování OAuth		465	Není podporováno	
Autentizace + šifrování OAuth		587		

Pro správné fungování SMTP komunikace musí být nastavena adresa odesílatele a adresy příjemců. WiFi snímače podporují až čtyři příjemce. Každý z příjemců může být nezávisle přiřazen k různým druhům e-mailů. E-mail může být odeslán v textovém nebo html formátu, dle nastavených požadavků. Interval opakovaných alarmových e-mailů může být nastaven v rozmezí 10 minut až 12 hodin. V případě zapnutí této volby, přístroj odesílá opakovaně alarmové e-maily v nastaveném intervalu, pokud alarm přetrvává. Opakované e-maily pro signalizaci správného fungování systému mohou být odesílány v intervalu 1 až 12 hodin dle potřeby.

Správnost nastavení SMTP parametrů je možné otestovat v menu Pokročilé volby. V prvním kroku je nezbytné správně nastavit SMTP připojení v konfiguraci přístroje. Poté může být otestováno odesílaní e-mailů. Návratové kódy jsou v tabulce níže.

Poslední stav	Poznámka
Neznámý	Stav testovací zprávy není znám. Je pravděpodobné, že doposud nebyl odeslán požadavek na testovací e-mail.
Čekejte	Právě probíhá odesílaní testovacího e-mailu. Prosím čekejte.
Úspěšně odeslán	Testovací e-mail byl úspěšně odeslán přes SMTP server. Zkontrolujte spoji e-mailovou schránku.
Chyba 1	Chyba překladu DNS. Ujistěte se, že je zadána správná adresa SMTP serveru a IP adresa DNS serveru je správná.
Chyba 2	Není možné vytvořit komunikační socket. Kontaktujte technickou podporu.

Chyba 3	Není možné otevřít TCP/TLS spojení na SMTD server Ulistěte
	se, že je zadána správná adresa SMTP serveru a konektivita od ISP je dostupná. Dalším důvodem této chyby mohou být nesprávně zadané síťové parametry, jako je maska podsítě, IP adresa brány, nebo je komunikace blokována na firewallu.
Chyba 4	Spojení bylo okamžitě uzavřeno ze strany serveru. Ujistěte se, zda je zadána správná adresa SMTP serveru a zapnutí volby TLS není vyžadováno.
Chyba 5	Chybná opověď na zaslaný úvodní příkaz HELO či EHLO. Je možné, že na druhé straně není SMTP server nebo je nezbytné mít zapnuté TLS, které není v přístroji nastaveno. Zkontrolujte adresu SMTP serveru a ujistěte se, zda volba TLS není vyžadovaná.
Chyba 6	Chyba autentizace. Chyba během odesílaní příkazu AUTH LOGIN. Ujistěte se, zda autentizace na SMTP serveru je zapnutá a příkaz AUTH LOGIN je podporován.
Chyba 7	Chyba autentizace. Chyba při odesílaní uživatelského jména. Ujistěte se, zda je zadáno správné jméno uživatele.
Chyba 8	Chyba autentizace. Chyba během zasílaní hesla. Zkontrolujte, zda je zadáno správné heslo.
Chyba 9	Chyba během odesílaní příkazu MAIL FROM.
Chyba 10	Chyba během odesílaní příkazu RCPT TO.
Chyba 11	Chyba během odesílaní příkazu DATA.
Chyba 12	Chyba během zasílaní dat e-mailové zprávy.
Chyba 13	Chyba během odesílaní zakončení dat (příkaz tečka).
Chyba 14	Chyba během odesílaní příkazu QUIT.
Chyba 15	Chyba autentizace. Je pravděpodobné, že je zadáno chybné uživatelské jméno nebo heslo. Ujistěte se, zda je zadán správný odesilatel e-mailu. Adresa odesílatele je obvykle stejná jako uživatelské jméno pro autentizaci. Dalším důvodem může být odmítnutí SMTP serverem z jiného důvodu (např. připojení k serveru není možné z dané podsítě).
Chyba 16	Jiná chyba během komunikace se SMTP serverem. Je pravděpodobné, že e-mail nebyl odeslán. Detailnější informace je možné získat z diagnostického logu.
Chyba 17	Není možné odeslat testovací e-mail. Odesílaní e-mailů je buď globálně vypnuto nebo parametry pro SMTP komunikaci jsou chybně zadány (např. adresa SMTP serveru, adresa odesílatele či adresy příjemců).
Chyba 18	Chyba během odesílaní příkazu STARTTLS.
Chyba 19	Není možné přepnout spojení na zabezpečené. Ověřte, zda SMTP server podporuje příkaz STARTTLS.

Modbus

Přístroj má integrovaný Modbus TCP server, pomocí kterého je možné přenášet hodnoty do systému třetí strany (SCADA systémy). Server dokáže obsloužit dvě Modbus TCP spojení současně. Ve výchozím nastavení je protokol zapnut s portem 502. Modbus TCP protokol je možné v případě potřeby deaktivovat. Popis registrů je v kapitole *Modbus TCP*.

Vision software

Nastavení TCP portu pro komunikaci s PC software – WifiSensorUtility, atd. Výchozí port je 10001 a může být změněn dle požadavků. WiFi snímač zde funguje jako TCP server. Komunikace s programem je zabezpečená pomocí TLS spojení a ověřována vůči certifikátu.

HTTP server

Měřené hodnoty mohou být získávány pomocí HTTP GET požadavků zaslaných na http server běžící ve WiFi snímači na TCP portu 80. Hodnoty mohou být poskytovány ve formátu XML nebo JSON přes soubory values.xml a values.json. Funkce je nezávislá na zabezpečení přístroje a může být dle potřeby zapnuta. Detailní informace jsou poskytnuty v kapitole *JSON a XML přes http server*.

SNMP

WiFi snímače mohou poskytovat měřené hodnoty pomocí SNMP protokolu. Jsou podporované verze protokolu SNMPv1, SNMPv2c a SNMPv3. Výchozí mód SNMP protokolu je SNMPv1/v2c. Community string je ve výchozím nastavení nastaven na "public". SNMPv3 protokol podporuje při módy funkce (NoAuthNoPriv, AuthNoPriv a AuthPriv). V závislosti na zvolném módu musí být nataveno uživatelské jméno, heslo pro autentizaci a heslo pro šifrování. Umístění systému může obsahovat bližší specifikaci místa instalace přístroje. Zápis přes SNMP není podporován. Detailní popis SNMP protokolu včetně OID klíčů je možné nalézt v kapitole *SNMP protokol*.

Nastavení Cloud protokolu

WiFi snímače mohou zasílat aktuálně měřené hodnoty na vzdálený server pomocí http(s) POST požadavků s JSON strukturou. Tuto funkci lze využít pro zasílaní dat do COMET Cloud, COMET Database nebo do systému třetí strany. Detailní popis protokolu je uveden v kapitole *Cloud protokol – JSON*. V případě, že není možné měřené hodnoty úspěšně doručit na server, jsou uloženy do interní zálohované paměti a jsou odeslány později. Velikost této paměti je 2240 sad hodnot. Díky této funkci nedojde ke ztrátě dat v případě výpadku WiFi sítě či nedostupné konektivitě. Cloud protokol má dva módy – COMET Cloud a COMET Database / Uživatelský server.

Mód COMET Cloud

Zapnutím tohoto módu přístroj začne zasílat měřené hodnoty přímo do COMET Cloud. COMET Cloud je placená služba. U nově zakoupeného WiFi snímače je možné využít COMET Cloud zdarma po dobu tří měsíců. Tato zkušební doba umožňuje vyzkoušet funkce COMET Cloud bez dalších přídavných nákladů. Aby byl přístroj viditelný v COMET Cloud, je třeba jej zaregistrovat. Procedura registrace je popsána na registrační kartě dodané spolu s přístrojem.

Interval zasílaní do COMET Cloud je nastavitelný v rozmezí 5 minut až 12 hodin. Nejkratší doporučený interval je 10 minut. Při zapnutí funkce asynchronních zpráv jsou zasílány zprávy při alarmu i mimo zvolený interval. Zprávy jsou též zasílány při zániku alarmu a při připojení do WiFi sítě. Ve výchozím nastavení přístroje jsou asynchronní zprávy zapnuty.

COMET Database / Uživatelský server

Tento mód umožňuje zasílat měřené hodnoty do COMET Database nebo systému třetí strany. COMET Database je sběrný systém založený na SQL databázovém serveru umožňující sběr a analýzu dat ze široké škály COMET přístrojů. COMET Database je možné využít jako alternativu ke COMET Cloud do vysoce zabezpečeného prostředí, kde není možné použít Cloud služby. 30denní zkušební verze COMET Database je k dispozici. Způsob připojení WiFi snímačů do COMET Database je popsán v manuálu ke COMET Database.

Nastavení > Cloud

Zasílací interval je možné nastavit v rozsahu 10 s až 12 hodin. Při zapnutí funkce asynchronních zpráv jsou při alarmu zprávy zasílány i mimo zvolený interval. Zprávy jsou též zasílány při zániku alarmu a při připojení do WiFi sítě. Zálohovaná paměť pro neodeslané zprávy může být v případě potřeby deaktivována. Při její deaktivaci nebudou zprávy při neúspěšné komunikaci se serverem uloženy. Tzn. v případě výpadku WiFi či konektivity budou hodnoty ztraceny. URL je nutné nastavit na cestu vstupního bodu COMET Database nebo http serveru třetí strany.

Test zasílaní Cloud zpráv

Připojení ke Cloud serveru je možné otestovat v menu Pokročilé volby dostupném z hlavní obrazovky. V prvním kroku je nutné nastavit Cloud protokol a uložit změny. Poté může být protokol otestován. Seznam chybových kódu pro test konektivity do Cloudu:

Poslední stav	Poznámka
Neznámý	Stav testovací zprávy není znám. Je pravděpodobné, že doposud nebyl odeslán požadavek na testovací zprávu.
Čekejte	Odesílaní zprávy právě probíhá. Prosím čekejte.
Úspěšně odeslán	Zpráva byla úspěšně odeslána a odeslání bylo potvrzeno ze strany serveru.
Chyba 1	Požadavek nebyl zpracován, protože přístroj není připojen v klientském módu. Pokud je přístroj v módu přístupového bodu, testovací zprávu není možné odeslat.
Chyba 2	Chyba překladu DNS. Ujistěte se, že je zadáno správné URL na Cloud server a IP adresa DNS serveru je správná.
Chyba 3	Není možné vytvořit komunikační socket. Kontaktuje technickou podporu.
Chyba 4	Není možné otevřít TCP/TLS spojení na Cloud server. Ujistěte se, že je zadáno správné URL, server je spuštěn a konektivita od ISP je dostupná. Dalším důvodem této chyby mohou být nesprávně zadané síťové parametry jako je maska podsítě, IP adresa brány nebo je komunikace blokována na firewallu.
Chyba 5	Chyba přenosu dat na server. Přístroj může otevřít TCP/TLS spojení na server, ale přenos dat není úspěšný. Ujistěte se, že na druhé straně běží http(s) server.
Chyba 6	Chybějící parametr <result> v odpovědi. Vypadá to, že na druhé straně běží http(s) server, který však není schopen správně zpracovat data z přístroje.</result>
Chyba 7	Chybějící potvrzení ze strany serveru. Tzn. hodnota ("True") v parametru <result>.</result>
Chyba 8	Zprávu nelze odeslat. Cloud protokol není zapnut nebo je zadáno chybné URL pro Cloud server.

Komunikační protokoly

Modbus TCP

Modbus TCP umožnuje číst měřené hodnoty z přístroje pomocí software od třetí strany jako jsou SCADA systémy. Modbus TCP server podporuje připojení dvou klientů ve stejný okamžik. Výchozí TCP port je 502. Adresa Modbus zařízení (Unit Identifier) může být libovolná. Zápis prostřednictvím Modbus protokolu není podporován. Popis protokolu a příklad v jazyce Python je dostupný na stránkách přístroje – Informace o přístroji / Knihovna. Detailní specifikace Modbus protokolu je zdarma k dispozici na adrese *www.modbus.org*.

Příkaz	Kód	Popis
Čtení Holding Registrů	0x03	Čtení 16-bit registr(ů)
Čtení Input Registrů	0x04	Čtení 16-bit registr(ů)

Podporované Modbus příkazy (funkční kódy):

Tabulka s Modbus registry. V závislosti na použitém komunikačním software může být nezbytné zadat číslo registru. Číslo registru je vždy o jedničku vyšší než adresa registru (např. registr číslo 0x9C41 má Modbus adresu 0x9C40). V Modbus TCP rámcích jsou fyzicky přenášeny adresy registrů.

Proměnná	Adresa [HEX]	Adresa [DEC]	Typ proměnné
Identifikace přístroje			
Sériové číslo	0x9C22	39970	BCD
(Sérové číslo přístroje má 8 číslic které jsou	0x9C23	39971	BCD
	0x9C24	39972	BCD
	0x9C25	39973	BCD
Typ přístroje	0x9C26	39974	HEX
Stavové informace			
Interní akustická signalizace	0x9C27	39975	INT
Optická LED signalizace	0x9C28	39976	INT
Hodnota RSSI (kvalita signálu)	0x9C29	39977	INT
Chyba konfigurace	0x9C2A	39978	INT
Systémový alarm – chyba měření	0x9C2B	39979	INT
Detekováno nízké napětí interní baterie pro RTC	0x9C2C	39980	INT

Měřené hodnoty				
Měřená hodnota na kanálu 1	0x9C40	40000	INT*X	
Měřená hodnota na kanálu 8	0x9C47	40007		
Stav alarmu 1 na kanálu 1	0x9C48	40008	INT	
Stav alarmu 1 na kanálu 8	0x9C4F	40015		
Stav alarmu 2 na kanálu 1	0x9C50	40016	INT	
Stav alarmu 2 na kanálu 8	0x9C57	40023		
Jednotka pro kanál 1	0x9C58	40024	STR	
Jednotka pro kanál 8	0x9C5F	40031		
Počet desetinných míst pro kanál 1	0x9C60	40032	INT	
Počet desetinných míst pro kanál 8	0x9C67	40039		
Měřená hodnota na kanálu 1	0x9C68	40040	32b INT *	
			(X+2)	
Měřená hodnota na kanálu 2	0x9C77	40055		
Měřená hodnota na kanálu 1	0x9C78	40056	IEEE 754	
			FLOAT	
Měřená hodnota na kanálu 2	0x9C87	40071		
Min. hodnota pro kanál 1	0x9C88	40072	INT*X	
Min. hodnota pro kanál 8	0x9C8F	40079		
Max. hodnota pro kanál 1	0x9C90	40080	INT*X	
Max. hodnota pro kanál 8	0x9C97	40087		

Typy proměnných:

Тур	Popis
BCD	Registr je v BCD formátu (16bit)
HEX	Číslo je v HEX formátu (16bit)
INT	Registr obsahuje 16bit znaménkové číslo s rozsahem -32768 až 32767
INT*X	Registr ve formátu 16bit znaménkového čísla. Z důvodu zvětšení rozlišení je měřená hodnota násobena hodnotou X. Počet desetinných míst je možné získat z registrů 40032 – 40039 nebo z tabulky níže.
	Příklad: počet desetinných míst je 1 pak hodnota teploty 238 z registru lze interpretovat jako 23,8 °C.

	Chybové hodnoty jsou přenášeny jako číslo menší než -32000 (např32005 = Chyba 5).
STR	Dva byte textu přenášené přes jeden 16bit Modbus registr
INT*(X+2)	32bit měřená hodnota s rozšířeným rozlišením o 2. Měřená hodnota je přenášena přes dva 16bit Modbus registry. Významnější část čísla je přenášena jako první (např. hodnota 22,825 = reg1: 0, reg2: 22825). Chybové hodnoty jsou přenášeny jako číslo nižší než -320000000 (např320000011 = Chyba 11).
IEEE 754	Hodnota je 32bit v IEEE 754 formátu přenášena přes dva Modbus registry. Např. hodnota 22,704 je zasílána jako reg1: 0xA317 a reg2: 0x41B5.

Tabulka desetinných míst pro INT*X:

Měřená hodnota	Počet des. míst	Jednotka	Příklad
Teplota	1 (= *10)	°C nebo °F	125 = 12,5 °C
Relativní vlhkost	1 (= *10)	%RH	80 = 80,1 %RH
Rosný bod	1 (= *10)	°C nebo °F	93 = 9,3 °C
Absolutní vlhkost		g/m³	$85 = 8,5 \text{ g/m}^3$
Specifická vlhkost		g/kg	76 = 7,6 g/kg
Směšovací poměr		g/kg	78 = 7,8 g/kg
Specifická entalpie		kJ/kg	445 = 44,5 kJ/kg
Humidex (v °C)			258 = 25,8
Barometrický tlak	1 (= *10)	hPa	10117 = 1011,7 hPa
	2 (= *100)	kPa	10117 = 101,17 kPa
	1 (= *10)	mBar	10118 = 1011,8 mBar
	1 (= *10)	mmHg	7588 = 758,8 mmHg
	2 (= *100)	inHg	2988 = 29,88 inHg
	1 (= *10)	inH₂O	4062 = 406,2 inH ₂ O
	3 (= *1000)	PSI	14675 = 14,675 PSI
	1 (= *10)	oz/in²	2348 = 234,8 oz/in ²
CO ₂ koncentrace	0 (= *1)	ppm	890 = 890 ppm

Cloud protokol – JSON

WiFi snímače mohou posílat měřené hodnoty na vzdálený server pomocí http(s) POST požadavků s JSON strukturou. Popis JSON protokolu naleznete v této kapitole. Příklad http serveru v jazyce Python je k dispozici na webu přístroje v sekci Informace o přístroji / Knihovna. Cloud protokol má dva módy – COMET Cloud a COMET Database / Uživatelský server. V této kapitole je popsán formát pro uživatelský server.

Měřené hodnoty jsou zasílaný přes HTTP POST s obsahem ve formátu JSON. Struktura JSON zprávy je popsána v kapitole Struktura JSON. Každá ze zpráv musí být potvrzena odpovědí dle kapitoly Odpověď na zprávu. Pokud zpráva není potvrzena ze strany serveru, pak zpráva není označena jako úspěšně odeslaná. A pokud paměť neodeslaných zpráv není vypnuta, zpráva je odeslána znovu při dalším připojení. Zprávy z paměti jsou odesílány jako první, až poté je odeslána aktuální zpráva. Velikost paměti je 2240 zpráv. Paměť je smazána po změně nastavení přístroje. Přístroj používá http 1.1 přenosy. Tzn. přes jedno otevřené TCP spojení je odesláno více POST požadavků (více JSON zpráv). Pokud server nedokáže správně obsloužit takové chování snímače, funkce paměti pro neodeslané zprávy musí být deaktivována. Jsou očekávány odpovědi serveru bez použití kódování "chunked transfer" (tzn. odpovědi musejí mít správnou hlavičku Content-Length). Přístroje podporují jak HTTP, tak i HTTPs přenos. V případě, že je vyžadována autentizace klienta, je možné ověření realizovat vůči COMET kořenovému certifikátu (CA soubor COMET System CA je k dispozici na vyžádání od technické podpory).

Struktura JSON

Struktura JSON obálky je následující:

```
<JsonType>,
<JsonVersion>,
<OrderId>,
<MsgType>,
<MsgCache>,
<Sn>,
<Desc>,
<Kind>,
<AState>,
<NConf>,
<ConfTD>
<Interval>.
<Time>,
<Rssi>,
<LocalIP>,
<Channels>
```

Struktura pole AState:

```
<AState>: { <Reg>, <Mask> }
```

Struktura pole Time:

<Time>: { <Now>, <Sample>, <IsValid> }

Struktura pole RSSI:

<Rssi>: { <Now>, <Sample> }

Struktura pro kanály:

```
<Channels>:
[
   {
       <Nr>,
      <En>,
       <Quant>,
      <Val>,
      <ValStr>,
      <Unit>,
      <Dec>,
      <Alarm>: [ <_Al1>, <_Al2> ],
<AlarmLim>: [ <_AlLim1>, <_AlLim2> ],
<AlarmMode>: [ <_AlMode1>, <_AlMode2> ]
   },
   {
       <Nr>,
      <En>,
      <Quant>,
      <Val>,
      <ValStr>,
      <Unit>,
      <Dec>,
     <Dec>,
<Alarm>: [ <_Al1>, <_Al2> ],
<AlarmLim>: [ <_AlLim1>, <_AlLim2> ],
<AlarmMode>: [ <_AlMode1>, <_AlMode2> ]
   },
   . . .
   . . .
]
```

Popis parametrů JSON zprávy:

Parametr	Тур	Rozsah	Popis		
<jsontype></jsontype>	INT		Typ JSON zprávy. Pro WiFi snímače je vždy 2.		
<jsonversion></jsonversion>	INT		Verze JSON zprávy. V aktuální verzi je nastaveno na 1.		
<orderid></orderid>	INT	0 – 32bit neznam.	Pořadové číslo zprávy od restartu přístroje. První zpráva má číslo 0.		
<msgtype></msgtype>	INT	0-4	Typ zprávy:		
			0 první zpráva po restartu		
			1 první zpráva po změně nastavení		
			2 synchronní zpráva		
			3 asynchronní zpráva		
			4 testovací zpráva		
<msgcache></msgcache>	INT	0-7	Typ zprávy ve vztahu k paměti:		
			0 přímá zpráva bez použití paměti		
			1 zpráva z paměti (NO_WLAN)		
			2 zpráva z paměti (DNS_ERR)		
			3 zpráva z paměti (SOCK_ERR)		
			4 zpráva z paměti (CONNECTION_ERR)		
			5 zpráva z paměti (TRANSFER_ERR)		

					6	zpráva z pa	měti (RESULT NO)
					7	zpráva z pai	měti (RESULT_CONFIRM)
							· _ /
<sn></sn>		STR	8B délka	Série	ové číslo příst	troje (např. 20286614)	
<desc></desc>		STR	64B délka	Jmé	no přístroje v	UTF-8	
<ki< td=""><td>nd></td><td></td><td>INT</td><td>1 – 11</td><td>Iden</td><td>tifikace typu p</td><td>přístroje:</td></ki<>	nd>		INT	1 – 11	Iden	tifikace typu p	přístroje:
					1	W0710	Т
					2	W0741	Т
				3	W3710	T+RH	
					4	W3711	T+RH
					5	W3721	T+RH
					6	W3745	T+RH
					7	W7710	T+RH+P
					8	W4710	T+RH+P+CO2
					9	W5714	CO2
					11	W0711	Т
					ASta	ite stavový reg	gistr. Popis registru je uveden
É					v tab	ulce níže.	
ťa.	<re< td=""><td>g></td><td>INT</td><td>0 - 65535</td><td>Hod</td><td>nota AState r</td><td>egistru v okamžiku vytvoření</td></re<>	g>	INT	0 - 65535	Hod	nota AState r	egistru v okamžiku vytvoření
CAS					zprá	vy.	
*	<ma< td=""><td>sk></td><td>INT</td><td>0 – 65535</td><td>Mas</td><td>ka pro bity AS</td><td>State registru</td></ma<>	sk>	INT	0 – 65535	Mas	ka pro bity AS	State registru
<nc< td=""><td>onf></td><td></td><td>INT</td><td>0 – 255</td><td>Číslo</td><td>o konfigurace</td><td></td></nc<>	onf>		INT	0 – 255	Číslo	o konfigurace	
<confid></confid>		STR	15B délka	Unik	átní ID konfig	urace (X-YYYYYYYYZZZZ)	
<in< td=""><td>terva</td><td>1></td><td>INT</td><td>0 - 65535</td><td>Zasí</td><td>lací interval v</td><td>[s]</td></in<>	terva	1>	INT	0 - 65535	Zasí	lací interval v	[s]
					Datu	m a čas	
~	<now></now>		STR	RFC3339	Čas,	kdy byla zprá	áva zaslána na server
an e	<sample></sample>		STR	RFC3339	Čas,	kdy byly hod	lnoty ve zprávě změřeny (tzn.
Ϊ					čas	může být sta	arší než <now> při posílaní</now>
v					zprá	vy z paměti).	
	<is< td=""><td>Valid></td><td>INT</td><td>0, 1</td><td>Indik</td><td>ace, zda je ča</td><td>as správný (1 = platný čas)</td></is<>	Valid>	INT	0, 1	Indik	ace, zda je ča	as správný (1 = platný čas)
					RSS	I pro indika	aci kvality signálu. Pokud
<u>^</u>					hodr	iota neni dos	stupna je vraceno cislo -99.
ŝ					UW	IFI je ocekava	any rozsan 30 do -99 dBm.
Å	<no< td=""><td>w></td><td>INT</td><td>< 0</td><td>RSS</td><td>l v okamžiku</td><td>přenosu zprávy na server</td></no<>	w>	INT	< 0	RSS	l v okamžiku	přenosu zprávy na server
	<sa< td=""><td>mple></td><td>INT</td><td>< 0</td><td>RSS</td><td>l v okamžiku l</td><td>kdy byly hodnoty změřeny</td></sa<>	mple>	INT	< 0	RSS	l v okamžiku l	kdy byly hodnoty změřeny
<lo< td=""><td>calII</td><td>></td><td>STR</td><td>64B délka</td><td>IP a</td><td>dresa zařízeni</td><td>í na lokální síti</td></lo<>	calII	>	STR	64B délka	IP a	dresa zařízeni	í na lokální síti
					Měře	ené hodnoty j	pro kanál. Pokud není kanál
					dost	upný, kanál ne	ení ve zprávě zobrazen.
	<nr< td=""><td>></td><td>INT</td><td></td><td>Číslo</td><td>o kanálu</td><td></td></nr<>	>	INT		Číslo	o kanálu	
	<en< td=""><td>></td><td>INT</td><td>0, 1</td><td>Zda</td><td>je kanál zapn</td><td>ut pro měření (1 = zapnut)</td></en<>	>	INT	0, 1	Zda	je kanál zapn	ut pro měření (1 = zapnut)
	<qu< td=""><td>ant></td><td>STR</td><td>32B délka</td><td>Jmé</td><td>no kanálu v U</td><td>JTF-8</td></qu<>	ant>	STR	32B délka	Jmé	no kanálu v U	JTF-8
	<va< td=""><td>1></td><td>STR</td><td>32B délka</td><td>Měře</td><td>ená hodnota</td><td>– přenášeno jako číslo</td></va<>	1>	STR	32B délka	Měře	ená hodnota	– přenášeno jako číslo
^					s plo	voucí deseti	nou čárkou v HEX formátu
ls		-			(FF8	100NN = chy	/ba číslo NN)
une D	<va.< td=""><td>lStr></td><td>STR</td><td>32B délka</td><td>Měře</td><td>ená hodnota</td><td>ve string formátu. Použití</td></va.<>	lStr>	STR	32B délka	Měře	ená hodnota	ve string formátu. Použití
hai					dese	tinné tečky	jako oddělováč míst (např.
Ŷ	<tt-< td=""><td></td><td>OTD</td><td></td><td>12.8</td><td>, n/a, Error X)</td><td></td></tt-<>		OTD		12.8	, n/a, Error X)	
	 VDr 		SIR		Jedr	ot doootinnig	iu v UIF-ö
	<de< td=""><td></td><td></td><td>0-10</td><td>POCe Store</td><td></td><td>$1 \ge 1$</td></de<>			0-10	POCe Store		$1 \ge 1$
	٨				Slav	aiannu na Ka	anaiu (1 = aiaiii)
	1 F.M						
	Ala	< A11>	INT	0.1	Alar	n 1 nro kanál	
	V	< A12>	INT	0.1	Alar	n 2 pro kanál	
		—		-, .			

armLim>				Alarmový limit jako IEEE 754 číslo zasílané přes HEX formát. Např. číslo 72,0442 je přenášeno jako text 429016A0.
(Al	<_AlLim1>	STR	32B len	Alarmový limit 1 pro kanál
v	<_AlLim2>	STR	32B len	Alarmový limit 2 pro kanál
				Mód alarmu:
Å Ø				0 alarm vypnut
lod				1 nižší než limit
A <u>n</u>				2 vyšší než limit
laı				
₹¥	<_AlMode1>	INT	0 - 2	Mód pro alarm 1
	<_AlMode2>	INT	0 – 2	Mód pro alarm 2

JSON pole <AState>-<Reg> poskytuje doplňkové informace ke zprávě. Popis jednotlivých bitů:

Bit	Popis
bit0 – bit1	RSSI indikace (0 = špatný signál, 1 = dostatečný, 2 = dobrý, 3 = výborný)
bit2 – bit4	Nepoužito
bit5	Chyba WLAN koprocesoru (=1)
bit6	Interní hardwarová chyba (1 = chyba RTC, paměti, LCD řadiče)
bit7	Přístroj úspěšně připojen k WiFi (=1)
bit8	Optická signalizace aktivní (=1)
bit9	Akustika aktivní (=1)
bit10	Nepoužito
bit11	Chyba RTC, čas nemusí být platný (=1)
bit12	Chyba měření na některém z kanálů (=1)
bit13	Chyba konfigurace přístroje (=1)
bit14 – bit15	Nepoužito

Některé bity AState mohou být vypnuty v konfiguraci. Tabulka uvádí seznam těchto bitů. Ostatní bity nejsou použity.

Bit	Popis
bit8	Optická signalizace zapnuta v konfiguraci (=1)
bit9	Akustická signalizace zapnuta v konfiguraci (=1)
bit12	Zapnuta funkce alarmu při chybě měření na některém z kanálů (=1)

Odpověď na zprávu

Úspěšné doručení zprávy na server musí být potvrzeno následující odpovědí:

```
{
    <Result>,
    <Message>
}
```

Parametr	Тур	Rozsah	Popis
<result></result>	BOOL		Odpověď, zda byla zpráva úspěšně zpracována na serveru. V případě že odpověď serveru je "true" zpráva je v přístroji označena jako úspěšně odeslaná a je smazána z paměti (pokud funkce není deaktivovaná).
<message></message>	STR	100B délka	Volitelný text odpovědi serveru. Text je zobrazen v diagnostickém logu (text nesmí obsahovat znak uvozovek).

Příklad správné odpovědi:

```
HTTP/1.1 200 OK
Date: Thu, 02 Jul 2020 08:04:30 GMT
Content-length: 75
{
    "Result":true,
    "Message":"All is OK. Message was successfully processed."
}
```

JSON a XML přes http server

Aktuálně měřené hodnoty je možné získat přes HTTP GET požadavek zaslaný na http server WiFi snímače na portu 80. Hodnoty mohou být poskytovány ve formátu XML nebo JSON přes soubory values.xml a values.json. Funkce je nezávislá na zapnutém zabezpečení. Z toho důvodu je ve výchozím nastavení vypnuta. Aby bylo možné funkci použít musí být zapnutá v nastavení přístroje. Pokud je funkce vypnuta je vrácen http chybový kód 403. Příklad v jazyce Python je k dispozici na web stránkách přístroje v sekci Informace o přístroji / Knihovna.

Odpovědi na GET požadavky pro soubory values.xml a values.json jsou na portu 80 obsluhovány http 1.0 serverem s možností obsloužit pouze jedno spojení ve stejný okamžiku. Doba odezvy je závislá na kvalitě WiFi signálu a zátěži http serveru. Průměrná doba odezvy v módu vysokého výkonu se pohybuje kolem 25 ms. V případě problémů s komunikací však doba odezvy může být až 10 s.

Struktura XML

Formát XML souboru může být validován oproti XSD schématu, které je dostupné na webu přístroje v sekci Informace o přístroji / Knihovna. Na stejném místě jsou pak i příklady XML souborů.

Popis klíčů tagu <root>:

Parametr	Тур	Rozsah	Popis
<devname></devname>	STR	64B délka	Jméno přístroje
<devsn></devsn>	STR	8B délka	Sériové číslo (např. 20280001)
<time></time>	STR	RFC3339	Aktuální čas
<timeunix></timeunix>	INT	32bit	Aktuální čas v Unix formátu (počet sekund
		neznam.	od 1.1.1970)
<synch></synch>	INT	0, 1	Indikace, zda čas v přístroji je platný (1 = platný)
<rssi></rssi>	INT	< 0	Kvalita signálu v [dBm]
<acc></acc>	INT	0, 1	Akustika aktivní (=1)
<ch1></ch1>			Elementy s informacemi o každém měřícím kanálu.
<ch8></ch8>			

Popis tagů pro kanály:

Parametr	Тур	Rozsah	Popis
<name></name>	STR	32B délka	Jméno kanálu (v anglickém jazyce)
<unit></unit>	STR	16B délka	Jednotka kanálu
<value></value>	STR	32B délka	Měřená hodnota v testovém formátu. Jako oddělovač desetinných míst je použita tečka. (např. 12.8, n/a, Error X)
<alarm1></alarm1>	INT	0, 1	Stav alarmu 1 (1 = alarm)
<alarm2></alarm2>	INT	0, 1	Stav alarmu 2 (1 = alarm)

Struktura JSON

{

Struktura JSON souboru values.json je následující:

<devname>, <devsn>, <time>, <timeunix>, <synch>, <rssi>, <acc>, <ch> [{ <name>, <unit>, <value>, <alarm1>, <alarm2> }, . . .

kde:

}

Parametr		Тур	Rozsah	Popis	
<devname></devname>		STR	64B délka	Jméno přístroje	
<devsn></devsn>		STR	8B délka	Sériové číslo (např. 20280001)	
<ti< td=""><td>ne></td><td>STR</td><td>RFC3339</td><td>Aktuální čas</td></ti<>	ne>	STR	RFC3339	Aktuální čas	
<ti< td=""><td>meunix></td><td>INT</td><td>32bit</td><td>Aktuální čas v Unix formátu (počet sekund</td></ti<>	meunix>	INT	32bit	Aktuální čas v Unix formátu (počet sekund	
			neznám.	od 1.1.1970)	
<sy< td=""><td>nch></td><td>INT</td><td>0, 1</td><td>Indikace, zda čas v přístroji je platný (1 =</td></sy<>	nch>	INT	0, 1	Indikace, zda čas v přístroji je platný (1 =	
				platný)	
<rs< td=""><td>si></td><td>INT</td><td>< 0</td><td>Kvalita signálu v [dBm]</td></rs<>	si>	INT	< 0	Kvalita signálu v [dBm]	
<ac< td=""><td>c></td><td>INT</td><td>0, 1</td><td>Akustika aktivní (=1)</td></ac<>	c>	INT	0, 1	Akustika aktivní (=1)	
	<name></name>	STR	32B délka	Jméno kanálu (v anglickém jazyce)	
	<unit></unit>	STR	16B délka	Jednotka kanálu	
^	<value></value>	STR	32B délka	Měřená hodnota v textovém formátu. Jako	
ch:				oddělovač desetinných míst je použita tečka.	
V				(např. 12.8, n/a, Error X)	
	<alarm1></alarm1>	INT	0, 1	Stav alarmu 1 (1 = alarm)	
	<alarm2></alarm2>	INT	0, 1	Stav alarmu 2 (1 = alarm)	

SNMP protokol

Měřené hodnoty, stavy alarmů a stav přístroje mohou být čteny pomocí SNMP protokolu. Jsou podporovány všechny běžné verze – tzn. SNMPv1, SNMPv2c a SNMPv3. Ve výchozím nastavení je použit smíšený mód, kdy Ize zároveň použít SNMPv1 a SNMPv2c. SNMP protokol využívá UDP port 161. Výchozí "community string" je nastaven na public. Zápis přes SNMP protokol není podporován. MIB tabulky jsou k dispozici na webu v sekci Informace o přístroji / Knihovna.

Pro SNMPv3 jsou podporovány módy – NoAutNoPriv (autentizace ani šifrování nejsou použity), AuthNoPriv (autentizace bez šifrování) a AuthPriv (autentizace s šifrováním). Při zapnutém módu AuthNoPriv a AuthPriv je nezbytné vypočítat klíče ze zadaných hesel. Protože tato operace je výpočtově náročná je start SNMP protokolu pozdržen 30 s po restartu přístroje nebo změně SNMP nastavení. Podporovaná je autentizace pomocí algoritmů MD5 a SHA. Podporované módy šifrovaní DES a AES128 (obvykle nazýváno pouze jako AES).

Je doporučeno použít AuthPriv mód spolu s SHA a AES128. Heslo pro autentizaci a šifrování by neměly být stejné. Hesla by měla mít alespoň 8 znaků bez opakujících se znaků či jejich skupin.

Seznam SNMP OID klíčů:

OID	Тур	Popis		
Identifikace přístroje				
.1.3.6.1.4.1.22626.1.8.1.1.0	STRING	Jméno přístroje		
.1.3.6.1.4.1.22626.1.8.1.2.0	STRING	Sériové číslo přístroje		
.1.3.6.1.4.1.22626.1.8.1.3.0	INTEGER	Model přístroje		
.1.3.6.1.4.1.22626.1.8.1.4.0	STRING	Model přístroje jako text		
Měřené hodnoty (ch = 1 to	8)			
.1.3.6.1.4.1.22626.1.8.2.1.1.1.ch	INTEGER	Číslo kanálu		
.1.3.6.1.4.1.22626.1.8.2.1.1.2.ch	STRING	Jméno kanálu		
.1.3.6.1.4.1.22626.1.8.2.1.1.3.ch	STRING	Měřená hodnota		
.1.3.6.1.4.1.22626.1.8.2.1.1.4.ch	INT*X	Měřená hodnota ve formátu INT*X		
.1.3.6.1.4.1.22626.1.8.2.1.1.5.ch	INTEGER	Počet desetinných míst pro formát INT*X		
.1.3.6.1.4.1.22626.1.8.2.1.1.6.ch	STRING	Jednotka kanálu		
.1.3.6.1.4.1.22626.1.8.2.1.1.7.ch	INTEGER	Stav alarmu 1 na kanálu		
.1.3.6.1.4.1.22626.1.8.2.1.1.8.ch	INTEGER	Stav alarmu 2 na kanálu		
.1.3.6.1.4.1.22626.1.8.2.1.1.9.ch	STRING	Minimální hodnota		
.1.3.6.1.4.1.22626.1.8.2.1.1.10.ch	STRING	Maximální hodnota		
Stavové informace				
.1.3.6.1.4.1.22626.1.8.3.1.0	INTEGER	Akustická signalizace aktivní		
.1.3.6.1.4.1.22626.1.8.3.2.0	INTEGER	Optická LED signalizace aktivní		
.1.3.6.1.4.1.22626.1.8.3.3.0	INTEGER	RSSI (kvalita signálu)		
.1.3.6.1.4.1.22626.1.8.3.4.0	STRING	Čas podle RFC3339		
.1.3.6.1.4.1.22626.1.8.3.5.0	STRING	Čas jako Unixový čas		
.1.3.6.1.4.1.22626.1.8.3.6.0	INTEGER	Čas je platný		
.1.3.6.1.4.1.22626.1.8.3.7.0	INTEGER	Chyba konfigurace přístroje		
.1.3.6.1.4.1.22626.1.8.3.8.0	INTEGER	Chyba měření		
.1.3.6.1.4.1.22626.1.8.3.9.0	INTEGER	Chyba interní baterie pro zálohu času RTC		

Seznam podporovaných OID klíčů pro MIB-II tabulku:

OID	Тур	Popis
.1.3.6.1.2.1.1.1.0	STRING	sysDescr (verze firmware a revize hardware)
.1.3.6.1.2.1.1.2.0	OBJ. ID	sysObjectID (.1.3.6.1.4.1.22626)
.1.3.6.1.2.1.1.3.0	TICKS	sysUpTime (čas od startu přístroje)
.1.3.6.1.2.1.1.4.0	STRING	sysContact (nastaveno na "cometsystem.com")
.1.3.6.1.2.1.1.5.0	STRING	sysName (jméno přístroje z nastavení)
.1.3.6.1.2.1.1.6.0	STRING	sysLocation (položka umístění systému z nastavení)
.1.3.6.1.2.1.1.7.0	INTEGER	sysServices (72=aplikační služby)

Řešení problémů

Tovární nastavení

Pomocí procedury továrního nastavení je konfigurace přístroje obnovena do stavu nově zakoupeného přístroje. Aktuální nastavení přístroje je smazáno včetně hesel a parametrů pro připojení do WiFi sítě. Po továrním nastavení je nezbytné opětovně provést připojení do WiFi sítě. Nahrané certifikáty pro WPA2-EAP zabezpečení při továrním nastavení smazány nejsou. Tovární nastavení je možné provést pouze lokálně. Je nezbytné odmontovat víčko přístroje pomocí šroubováku Torx T10. Šroubovák není součástí dodávky.

Procedura továrního nastavení:

- 1. Odpojte napájení přístroje pomocí odpojení USB-C konektoru.
- 2. Odšroubujte víčko přístroje pomocí Torx šroubováku.
- 3. Změňte pozici zkratovací propojky z pozice 1 do pozice 2 viz obrázek níže. Pro změnu pozice propojky je možné použít pinzetu.

- 4. Připojte napájení přístroje pomocí USB-C konektoru.
- 5. Vyčkejte zobrazení textu DEF1 DONE na LCD displeji.
- 6. Odpojte napájení.
- 7. Vraťte zkratovací propojku do pozice 1.
- 8. Zavřete víčko přístroje a přišroubujte zpět všechny čtyři šrouby.
- 9. Připojte napájení přístroje. Procedura továrního nastavení byla dokončena.

Procedura továrního nastavení obnoví konfiguraci samotného přístroje. Kalibrační konstanty v Digi sondách a přístroji nejsou ovlivněny. V případě obnovy kalibračních konstant v přístroji, je nutné realizovat modifikovanou proceduru továrního nastavení. Před připojením napájení (bod 4) je potřeba stisknout a držet stisknuté tlačítko SET, dokud se na LCD displeji nezobrazí text DEF2 DONE. Ostatní kroky jsou stejné jako u procedury výše.

Zapomenuté administrátorské heslo

Při zapomenutí administrátorského hesla a díky tomu nemožnosti přístupu k přístroji, je nutné provést *tovární nastavení*. Způsob provedení továrního nastavení je uveden v kapitole výše.

Jak zjistit IP adresu přístroje

IP adresu v klientském módu je možné zadat manuálně (statická IP adresa) nebo může být získána z DHCP serveru. IP adresu pro mód přistupovaného módu není možné uživatelský konfigurovat a je nastavena na 192.168.3.1. IP adresu bez ohledu na zvolený mód je možné zjistit různými způsoby:

- IP adresa je zobrazena na LCD displeji po krátkém stisku tlačítka MODE. Pokud je adresa zobrazena jako 0.0.0.0, znamená to, že přístroj nemá přidělenou IP adresu. Ať už z důvodu chyby připojení k WiFi či nemožnosti získat IP adresu z DHCP serveru.
- IP adresa může být zjištěna vyhledáním přístroje na síti pomocí programu COMET Vision či TSensor. Tyto programy jsou zdarma ke stažení na stánkách výrobce.
- Lokální IP adresu je možné zobrazit v COMET Cloud nebo v COMET Database. Je však nezbytné, aby byl přístroj již připojen do těchto sběrných systémů.
- Lze použít web rozhraní infrastrukturního přístupového bodu či routeru, pokud je přístroj v klientském módu s využitím DHCP. Dostupnost této možnosti je závislá na typu přístupového bodu či routeru.

Jak použít nově připojenou Digi sondu

Pokud je po připojení nové Digi sondy zobrazena Chyba 30, Chyba 40 či text n/a, je nezbytné provést novou detekci sondy. Sondy jsou detekovány po restartu přístroje nebo lze detekci vyvolat manuálně v menu Pokročilé volby / Servis.

Chybové kódy na kanálech

Tato kapitola obsahuje soupis chybových kódů, které mohou být zobrazeny na měřících kanálech. Dříve než kontaktujete technickou podporu postupujte dle doporučení níže. Chybové kódy na LCD displeji jsou zobrazeny s prefixem "E". Chybové kódy zasílané přes Modbus TCP registry jsou čísla nižší než -32000 (např. -32005 = Chyba 5).

Chybový kód	Popis
Chyba 1	A/D převodník pro měření z Pt1000 sondy je pod dolním limitem. Pravděpodobně je sonda zkratovaná.
	Zkontrolujte sondu, zda není poškozena a případně vyměňte vadnou sondu.

Chyba 2	A/D převodník pro měření z Pt1000 sondy je nad horním limitem. Je pravděpodobné, že teplotní sonda není připojena nebo kabel sondy je poškozen.
	Zkontrolujte sondu, zda není poškozena nebo připojte sondu.
Chyba 3	Měřená hodnota je mimo očekávaný rozsah.
	Kontaktujte technickou podporu.
Chyba 4	Zdrojová hodnota pro vypočtenou veličinu (např. rosný bod) není k dispozici.
	Zkontrolujte příslušnou Digi sondu, zda je správně připojena a zda není poškozena.
Chyba 10	Chyba komunikace s interním CO ₂ senzorem.
	Kontaktujte technickou podporu.
Chyba 11	Chyba měření interního CO ₂ čidla. Jedním z důvodů této chyby může být nedostatečné napětí z napájecího zdroje.
	Ujistěte se, že je používán správný napájecí adaptér a USB kabel není příliš dlouhý či poškozen. Pokud není možné problém vyřešit užitím jiného adaptéru a USB kabelu, pak kontaktujte technickou podporu.
Chyba 15	Chyba komunikace s čidlem relativní vlhkosti uvnitř Digi sondy. Je pravděpodobné že Digi sonda je poškozena.
	Restartuje přístroj odpojením napájecího napětí. Pokud problém stále přetrvává vyměňte Digi sondu.
Chyba 16	Chyba měření z čidla relativní vlhkosti.
	Restartuje přístroj odpojením napájecího napětí. Pokud problém stále přetrvává vyměňte Digi sondu.
Chyba 20	Není možné číst kalibrační konstanty z čidla barometrického tlaku.
	Kontaktujte technickou podporu.
Chyba 21	Interní chyba měření u čidla barometrického tlaku.
	Kontaktujte technickou podporu.
Chyba 30	Chyba komunikace s A/D převodníkem.
	Kontaktujte technickou podporu.
Chyba 35	Měřená hodnota z Digi sondy není dostupná.
nebo n/a	Di pravaepouoprie, ze sonda neni pripojena.
Chuba 26	Připoje Digi solidu a znovu ji delekujte.
Chyba 30	součtu paměti kalibračních konstant v sondě.
	Kontaktuje technickou podporu pro získání programu WifiSensorUtility. Tento program umožňuje provést obnovu paměti kalibračních konstant ze zálohy.

Chyba 37	Neznámy typ Digi sondy.
	Proveďte aktualizaci firmware přístroje a proveďte detekci sond.
Chyba 38	Chyba komunikace s pamětí kalibračních konstant v Digi sondě. Je pravděpodobné, že sonda není správně připojena nebo je poškozena.
	Připojte správně sondu nebo nahraďte poškozenou sondu.
Chyba 39	Chyba kontrolního součtu v paměti kalibračních konstant v Digi sondě.
	Postupujte dle procedury pro chybu 36.
Chyba 40	Připojená Digi sonda není stejného typu.
	Proveďte opětovnou detekci Digi sondy.
Chyba 50	Konfigurace přístroje pro měřící kanály je poškozena.
	Poškozenou konfiguraci je možné opravit pomocí továrního nastavení nebo programu WifiSensorUtility, který je možné získat od technické podpory.
Chyba 52	Měřenou hodnotu není možné zobrazit z důvodu přetečení hodnoty během výpočtů.
Chyba 53	Hodnota není dostupná. Tato chyba je zobrazena
nebo n/a	na vypnutých kanalech v nastavení nebo pokud hodnota jeste nebyla změřena. Koncentrace CO ₂ je dostupná 15 sekund po startu přístroje.
Chyba 55	Chyba má vztah k Modbus TCP protokolu. Signalizuje překročení hodnoty v Modbus registru.

Symbol vykřičníku na LCD displeji

Varovný vykřičník zobrazen v levém dolním rohu LCD displeje signalizuje problém se samotným přístrojem. Hlavní důvody jsou:

- Hardwarový problém s jednou z těchto komponent WiFi koprocesor, interní paměťový čip, RTC obvod nebo řadič LCD displeje.
- Poškozený obsah v konfigurační paměti.

Poškozený obsah konfigurační paměti je možné identifikovat zobrazením chybového hlášení při přechodu do nastavení přístroje. Poškozenou konfiguraci je možné opravit pomocí *továrního nastavení* nebo pomocí programu WifiSensorUtility. Ten je možné získat od technické podpory.

V případě problému s hardwarem přístroje kontaktujte technickou podporu.

Symbol baterie na LCD displeji nebo chybný čas

Aktuální čas v přístroji je udržován obvodem reálného času (RTC) napájeného ze zálohovací knoflíkové baterie. Kapacita baterie je navrhnuta dle předpokládané životnosti přístroje a není vyměnitelná uživatelem.

V případě že je zobrazen symbol baterie na LCD displeji či je zobrazen červený vykřičník vedle času na webu, aktuální čas v přístroji nemusí být správný. Nastavte správný čas v konfiguraci přístroje a uložte jej. Poté odpojte napájení přístroje a vyčkejte 5 minut pro ověření, zda zálohovací baterie funguje správně. Pokud je symbol baterie po zapnutí opět zobrazen, kontaktujte technickou podporu.

Není možné zapnout přístroj

Pokud přístroj nejeví známky funkčnosti, přestože napájení je připojeno, nepravděpodobnějším důvodem je problém s napájecím adaptérem či USB kabelem. V prvním kroku se ujistěte, zda je funkční síťová zásuvka. Pokud je funkční vyměňte napájecí adaptér a kabel za jiný. Specifikace napájecího adaptéru a USB kabelu je uvedena v kapitole *Napájení*. Pokud problém nebyl vyřešen, odšroubujte víčko přístroje a vizuálně přístroj zkontrolujte, zda není poškozen (např. oxidace). Dále ověřte polohu zkratovací propojky viz. obrázek níže. Pokud problém i nadále přetrvává, kontaktujte technickou podporu.

Přístroj se neustále restartuje

Během restartu přístroje jsou rozsvíceny veškeré segmenty na LCD displeji. Pokud se přístroj neustále restartuje, obvykle to znamená závadu na napájecím adaptéru či USB kabelu. Zkuste vyměnit napájecí adaptér a USB kabel dle specifikace v kapitole *Napájení*. Pokud nebylo možné problém vyřešit výměnou napájecího adaptéru a kabelu, kontaktuje technickou podporu.

Problémy s přesností měření

Problémy s přesností měření teploty a relativní vlhkosti jsou obvykle způsobeny chybným umístěním sond či špatnou metodologií měření. Postupujte podle doporučení v kapitole *Provoz přístroje v různých*

aplikacích. Při zobrazení chyby měření na kanálu postupujte dle kapitoly *Chybové kódy na kanálech*.

Další skupinou chyb měření jsou náhodné špičky na měřených hodnotách. Častým důvodem pro podobný druh chyb jsou zdroje elektromagnetického rušení v blízkosti přístroje či kabelů. Neinstalujte přístroj do bezprostřední blízkosti přístupového bodu (blíže než 1 m). Dalším důvodem může být poškozená izolace kanelů. Ujistěte se, že stínění sond je řádně připojeno.

Problémy s připojením do WiFi sítě

V případě problémů s připojením k WiFi síti, postupujte podle těchto kroků:

- V prvním kroku se ujistěte, zda jsou zadány správné WiFi parametry jako je SSID, heslo a typ zabezpečení. V případě potřeby je možné údaje ověřit jiným WiFi zařízením. Jsou podporovány tyto typy Personal zabezpečení: WEP, WPA / WPA2, WPA2-PMF a WPA3. WPA2 Enterprise zabezpečení je podporováno od firmware verze 10.0.6.0.
- 2. Ujistěte se, zda je síla signálu dostatečná. Přemístěte WiFi snímač blíž k přístupovému bodu / routeru a opakujte test s připojením.
- 3. Ověřte nastavení infrastrukturního přístupového bodu či WiFi routeru. WiFi snímače využívají komunikací v pásmu 2,4 GHz. Ujistěte se, že 2,4 GHz pásmo není v přístupovém bodu zakázáno nebo přístupový bod není v módu podporujícím pouze 5 GHz. Přístupový bod / router může mít nastaveno omezení klientů podle MAC adres. Ujistěte se, že podobná omezení jsou správně nastavena.

Problém s připojením do sítě WPA2-EAP

Pro připojení k WPA2-EAP síti je nezbytná správně nakonfigurovaná síťová infrastruktura stejně jako WiFi snímač samotný. Z toho důvodu je kontakt se síťovým administrátorem nezbytný pro vyřešení problému s připojením.

Pro diagnostiku problému s WPA2-EAP připojením je nezbytný log z autentizačního (RADIUS) serveru a diagnostický log z WiFi snímače. Mějte na paměti, že log ve WiFi snímači je smazán po restartu přístroje. Z toho důvodu je doporučeno nastavit záložní WiFi síť s použitím PSK hesla, pro stažení diagnostického logu po neúspěšném připojení do primární sítě (s EAP zabezpečením). Kontrolní seznam při problémech s EAP připojením:

EAP mód	Kontrolní seznam	
EAP-TLS	1. Ujistěte se, že je zadáno správné SSID pro WiFi	
EAP-TTLS-TLS	siť a je zvoleno zabezpečení WPA2-EAP.	
EAP-PEAP0-TLS	2. Ověřte, zda jsou správně zadány parametry	
EAP-PEAP1-TLS	Parametr identita musí být nastaven.	
	 Ověřte, zda je nahrán správný klientský certifikát, privátní klíč a CA soubor. Soubory je nutné nahrát 	

	v DER formátu. Klientský certifikát a privátní klíč jsou povinné pro tyto EAP metody.
	 Ověřte, zda přístroj má nastaveno správné datum a čas pro kontrolu expirace CA souboru. Ověření pomocí CA souboru je možné deaktivovat v nastavení přístroje.
	 Ověřte, zda jsou na RADIUS serveru povoleny správné EAP metody. Ujistěte se že TLS 1.0 je povoleno na serveru.
EAP-TTLS-MSCHAPv2 EAP-TTLS-PSK EAP-PEAP0-MSCHAPv2 EAP-PEAP0-PSK EAP-PEAP1-PSK	 Ujistěte se, že je zadáno správné SSID pro WiFi síť a je zvoleno zabezpečení WPA2-EAP. Ověřte, zda jsou správně zadány parametry pro EAP zabezpečení (např. EAP mode). Parametry identita a heslo jsou povinné. Ověřte, zda je nahrán správný CA soubor. CA soubor je nutné nahrát v DER formátu. Ověřte, zda přístroj má nastaveno správné datum a čas pro kontrolu expirace CA souboru. Ověření pomocí CA souboru je možné deaktivovat v postavoní přístroj
	 5. Ověřte, zda jsou na RADIUS serveru povoleny správné EAP metody.

Problémy se sílou WiFi signálu

Správné fungování WiFi snímačů je závislé na připojení k infrastrukturnímu přístupovému bodu nebo WiFi routeru. V případě, že síla signálu není dostatečná, zařízení nemusí fungovat správně a mohou být problémy s přenosem dat do záznamového systému nebo s odesíláním alarmových e-mailů. Síla signálu závisí na vzdálenosti od přístupového bodu a typu překážek mezi přístrojem a přístupovém bodem. Velikost útlumu signálu je závislá na materiálu překážky a pro 2,4GHz je přibližně následující:

Materiál	Útlum signálu
Strop	20-30 dB
Betonová zeď	10-15 dB
Cihlová zeď	8 dB
Sádrokartonová příčka	4 dB

V případě problémů s připojením je nezbytné provést kontrolu síly signálu. Pokud síla signálu není dostatečná, pozice přístroje nebo infrastrukturního přístupového bodu musí být změněna. Přidání dalšího přístupového bodu blíže přístroji může být řešením nedostatečného pokrytí WiFi signálem. Použití WiFi přístrojů na místech, kde je instalováno větší množství přístupových bodu s překrývajícími se kanály může být problematické. V tomto případě by měl být zvolen co nejméně obsazený WiFi kanál. Použití takového kanálu bude minimalizovat potenciální rušení.

V případě použití WiFi snímače s SMA konektorem (modifikace Wx7xxQ) se ujistěte, že je použita anténa podle *technické specifikace*. Nekompatibilní anténa může ovlivnit správné fungování přístroje.

Doporučená síla signálu (RSSI) je vyšší než -70 dBm (např. -55 dBm). Sílu signálu je možné stanovit těmito kroky:

- 1. Připojte přístroj v klientském módu k infrastrukturnímu přístupovému bodu.
- 2. Umístěte přístroj do místa, ve kterém bude měřeno RSSI.
- 3. Zmáčkněte třikrát tlačítko SET.
- Vzdalte se od přístroje. Po 30 s odečtěte hodnotu RSSI z LCD displeje. V případě, že je zobrazena hodnota -99, vyčkejte delší dobu. Pokud je neustále zobrazena hodnota -99, zkontrolujte, zda je přístroj správně připojen do WiFi sítě.

Doporučení pro provoz a údržbu

Provoz přístroje v různých aplikacích

Před nasazením přístroje do provozu je nutno nejprve posoudit, zda je jeho použití pro daný účel vhodné, dále je nutno stanovit jeho optimální nastavení a v případě, že je součástí většího měřicího systému, zpracovat směrnici pro jeho metrologické a funkční kontroly.

Nevhodné a rizikové aplikace. Přístroj není určen pro takové aplikace, kde by selhání jeho činnosti mohlo bezprostředně ohrozit životy a zdraví osob a zvířat nebo funkci jiných zařízení, které podporují životní funkce. U aplikací, kde by při poruše nebo selhání mohlo dojít k závažným škodám na majetku, se doporučuje systém doplnit vhodným nezávislým signalizačním zařízením, které tento stav vyhodnotí a v případě poruchy zabrání uvedeným škodám.

Umístění přístroje. Dodržujte zásady a postupy uvedené v tomto manuálu. Pokud je to možné, vybírejte pro přístroj takové místo, kde bude co nejméně zatěžován vnějšími okolními vlivy. Pokud provádíte měření v lednicích, kovových boxech, klimatických komorách apod., umístěte přístroj mimo prostor a dovnitř veďte pouze sondy. Díky tomuto přístupu je možné zvýšit provozní spolehlivost, vylepšit sílu WiFi signálu a umožnit odečet hodnot z LCD displeje mimo komoru.

Umístění snímačů teploty. Umisťujte sondu do místa, kde je dostatečné proudění vzduchu a kde předpokládáte nejkritičtější místo (podle požadavků aplikace). Aby nedocházelo k ovlivňování naměřených hodnot nežádoucím přívodem tepla po vodičích, je nezbytné sondu vsunout dostatečně daleko do měřeného prostoru. Sledujete-li průběh teploty v klimatizovaném skladu, pak čidlo sondy neumisťujte do přímého proudění z klimatizační jednotky. Např. ve velikých komorových lednicích může být rozložení teplotního pole velmi nehomogenní, odchylky mohou dosahovat až 10 °C. Stejné odchylky můžete naměřit i v prostoru hluboko mrazících boxů (např. pro zamrazování krve apod.).

Umístění snímačů vlhkosti. Umístění kombinované sondy teplota-vlhkost je závislé na požadavcích aplikace. Velmi problematické může být měření vlhkosti v lednicích, které nemají přídavnou stabilizaci vlhkosti. Při zapínání/vypínání chlazení může docházet k výrazným změnám vlhkosti v rozsahu desítek procent, i když je střední hodnota vlhkosti v pořádku. Běžná je také kondenzace vlhkosti na stěnách komor.

Doporučení pro metrologické kontroly

Metrologické ověření by mělo být prováděné dle požadavků aplikace v intervalech stanovených metrologem organizace využívající přístroj. Doporučený interval kalibrace je dostupný v *technické specifikaci* přístroje pro každý jednotlivý model. Dle zákonných požadavků může být pro některé aplikace vyžadováno, aby kalibrace přístroje byla provedena nezávislou akreditovanou kalibrační laboratoří. Požadavky na kalibraci stanovuje metrolog organizace.

Doporučení pro pravidelné kontroly

Je doporučeno kontrolovat měřící řetězec v pravidelných intervalech. Interval kontrol a způsob provedení je závislé na typu aplikace a interních předpisech organizace provozující přístroj. Výsledek každé kontroly by měl být písemně zaznamenán. Nalezené problémy by měly být odstraněny v závislosti na jejich závažnosti. U stálých instalací jsou doporučeny následující kroky:

- Celková vizuální kontrola přístroje včetně kontroly neporušenosti krytů a stavu konektorů. Zkontrolujte též správné připevnění přístroje.
- Kontrola kabelů a sond. Je nutné zkontrolovat připojení kabelů, povrch kabelů a správnost instalace kabelů (např. zda nebylo nainstalováno nové silové vedení v blízkosti kabeláže přístroje).
- Kontrola snímacích elementů sond. Vizuální kontrola, zda nevnikla voda do sond. Kontrola prostoru, kde jsou sondy nainstalovány, zda jsou dodrženy podmínky umístění sond.
- Kontrola funkce celého měřícího řetězce (kontrola funkcí, které jsou v aplikaci využívány):
 - a) Kontrola, zda přístroj zobrazuje očekávané měřené hodnoty. Měřené hodnoty mohou být sledovány na LCD displeji nebo na web stránkách přístroje.
 - b) Kontrola, zda měřené hodnoty jsou správně přenášeny do záznamového systému jako je COMET Cloud či COMET Database. Data jsou zaslána dle nastaveného zasílacího intervalu.
 - c) Kontrola historie dat v záznamovém systému v reakci na neočekávané výpadky dat či chybové stavy.
 - d) Kontrola funkce alarmování. Toho lze dosáhnout změnou měřené hodnoty tak, aby byl vyvolán alarm (např. zahřátím teplotní sondy). Alarmový stav je zobrazen na LDC displeji případně je odeslán e-mail (pokud je funkce využívána).

Doporučení pro IT bezpečnost

IT bezpečnost je důležitým aspektem nasazení jakéhokoliv přístroje připojeného do Ethernetu či WiFi sítě. Není to důležité pouze s ohledem na aplikaci a měřící zařízení, ale též s ohledem na integritu celé síťové infrastruktury. Jakékoliv neadekvátně zabezpečené síťové či IoT zařízení může kompromitovat bezpečnost sítě. Následující kapitola obsahuje doporučení, jak bezpečně provozovat WiFi snímače.

Zabezpečení WiFi snímače. WiFi snímače mají integrované pokročilé bezpečností funkce. Přístroje integrují tři uživatelské účty s předdefinovanými pravidly pro každého uživatele. Tato pravidla jsou popsána v kapitole *Zabezpečení*. WiFi snímače jsou expedovány bez zapnutého zabezpečení. Důrazně je doporučeno zapnout zabezpečení přístroje při jeho konečném nasazení. Mělo by být použito dostatečně "silné" heslo. To by mělo obsahovat minimálně 10 znaků s využitím čísel a několika speciálních znaků. Nikdy nepoužívejte stejné heslo pro více zařízení či účtů.

WiFi snímače mohou být přepnuty z módu WiFi klienta do AP módu pomocí tlačítek na přístroji. Po přepnutí se přístroj chová jako přístupový bod s možností připojení až čtyř klientů. Ve výchozím nastavení tento mód není heslem zabezpečen = otevřená WiFi síť. Je důrazně doporučeno zapnout WPA2 zabezpečení pro AP mód s dostatečně "silným" heslem.

Přístroj nemá integrovaný UPnP protokol. Seznam příchozích portů je dostupný v *Příloze* 6. Firmware přístroje není napsán v jazyce Java. Z toho důvodu se chyby v Java knihovnách nevztahují na firmware WiFi snímačů.

Zabezpečení infrastruktury. Při koncovém nasazení jsou WiFi snímače připojeny k přístupovému bodu nebo routeru s WiFi funkcí. Je doporučeno připojovat WiFi snímače do oddělené WiFi sítě s vlastním SSID. Tato WiFi síť by měla mít vlastní VLAN tag. VLAN sít by pak měla být izolovaná na firewallu se správně nastavenými pravidly směrování. Je doporučeno využívat WiFi zabezpečení WPA2 PMF nebo WP3 s dostatečně "silným" heslem. Nikdy nepoužívejte WEP zabezpečení.

WiFi snímače umožňují připojení do sítí s Enterprise zabezpečením (WPA2-EAP). Seznam podporovaných EAP metod je dostupný v kapitole *Rádiová část.* Pro některé EAP metody je nezbytné nahrát do přístroje klientský certifikát, privátní klíč a CA soubor. CA soubor se využívá k ověření autentizačního (RADIUS) serveru. Toto ověření RADIUS serveru je možné v nastavení přístroje vypnout. Z bezpečnostního hlediska to však není doporučeno.

Přístup z jiného místa k přístroji. V případě, že je potřeba přistupovat k přístroji z jiného místa (mimo lokální síť), je doporučeno použít VPN. Tento přístup může zabránit potenciálnímu útoku na přístroj. Je důrazně doporučeno nevystavovat přístroj přímo do internetu pomocí pouhého přesměrování portu na bráně či NAT.

Aktualizace firmware. V přístroji je vhodné používat nejnovější verzi firmware. Firmware by měl být získán pouze z oficiálních zdrojů jako jsou stránky výrobce nebo přímým kontaktem s technickou podporu. Nikdy

nepoužívejte firmware z neoficiálních zdrojů. Takový firmware může ovlivnit správné fungování přístroje a může kompromitovat bezpečnost.

Vyřazení z provozu. V případě vyřazení z provozu, prodeje či přesunu přístroje na jiné místo, mějte na paměti, že přístroj může obsahovat důvěrné informace. Pro zabránění úniku důvěrných informací je doporučeno provést proceduru *továrního nastavení*,. V případě, že je využíváno zabezpečení WPA2-EAP s nahranými certifikáty v přístroji, tak při uvedení přístroje do továrního nastavení tyto certifikáty nejsou smazány. Certifikáty je možné smazat pomocí programu WifiSensorUtility, který lze získat od technické podpory. Alternativně je možné přepsat certifikáty jinými certifikáty přes web přístroje.

Záložní soubory s konfigurací. Nastavení přístroje je možné uložit do souboru. Tento soubor lze použít později pro obnovení konfigurace. Mějte na paměti, že záložní soubor obsahuje důvěrná data, jako je heslo do WLAN. Soubor se zálohou není šifrován.

Technická podpora ohledně IT bezpečnosti. Technickou podporu je možné kontaktovat v případě jakýchkoliv dotazů ohledně bezpečnosti naších produktů. *Bezpečnostní zranitelnosti a upozornění* jsou dostupná na COMET web stránkách.

Aktualizace firmware

Firmware přístroje je možné aktualizovat z web stránek – Pokročilé volby / Servis / Aktualizace firmware. V případě zapnutého zabezpečení je nezbytné se přihlásit jako administrátor. Nahrání starší verze firmware, než je aktuální verze, není přes web podporováno.

Nejnovější verzi firmware je možné získat ze stránek výrobce nebo od technické podpory. Před zahájením aktualizace si pečlivě přečtěte instrukce pro aktualizaci.

Technická podpora a servis

Technickou podporu poskytuje distributor zařízení. Kontakt na distributora je uveden na záručním listě přiloženém k přístroji. Spolu se žádostí o technickou podporu je vhodné zaslat diagnostický soubor stažený ze zařízení. Diagnostický soubor lze stáhnout v menu Pokročilé volby / Servis. Diagnostický soubor obsahuje důležité technické informace o fungování přístroje. Může obsahovat důvěrné informace jako je IP adresa či SSID. Neobsahuje hesla.

Upozornění. Nesnažte se opravit přístroj svépomocí. Opravy přístroje by měl provádět pouze dostatečně zkušený a instruovaný servisní personál. Nesprávná instalace, provoz či zásah do zařízení může způsobit ztrátu záruky. Výrobce si vyhrazuje právo odmítnout bezplatnou opravu během záruční doby u takto poškozených přístrojů.

Technické specifikace

Napájení

Napájecí napětí:

5,0 V až 5,4 V DC

Spotřeba:

Typicky 150 mA v módu vysokého výkonu (max. 500 mA)

Doporučený napájecí adaptér:

A1879 (Sunny SYS 1561-1105)

Doporučený kabel:

MP053 (USB A na USB-C délky 1 m)

Konektor:

USB-C

Obecné parametry

Interval měření:

1 s (15 s pro měření koncentrace CO₂)

Interval přepínání LCD displeje:

4 s

Hodiny reálného času:

S interní zálohovací baterií, s maximální odchylkou 200 ppm ± 5 ppm/rok při teplotě 23 °C ± 10 °C

Rádiová část

Frekvence:

2,4 GHz

Norma:

IEEE 802.11 b/g/n

Max. vysílací výkon:

18 dBm

Šířka kanálu:

20 MHz

WiFi zabezpečení:

Open, WEP, WPA / WPA2, WPA2-PMF, WPA3

WPA2 Enterprise (IEEE 802.1X)

Podporované WPA2 Enterprise metody:

EAP-TLS * EAP-TTLS-TLS * EAP-TTLS-MSCHAPv2 EAP-TTLS-PSK EAP-PEAP0-TLS * EAP-PEAP0-MSCHAPv2 EAP-PEAP0-PSK EAP-PEAP1-TLS * EAP-PEAP1-PSK

EAP-FAST-AUTH-PROVISIONING

EAP-FAST-UNAUTH-PROVISIONING

EAP-FAST-NO-PROVISIONING

* Je podporováno pouze TLS 1.0 (TLS 1.1, TLS 1.2 není přístrojem podporováno)

WiFi módy:

Klientský mód

Mód přístupového bodu (až čtyři připojení klienti současně)

Anténa:

Standardní přístroj:

• Neodnímatelná externí anténa

Specifikace antény pro přístroje s modifikací Wx7xxQ:

• Anténní konektor na přístroji:

RP-SMA

- Impedance antény: 50 Ω
- Frekvenční rozsah: 2,4 GHz pro WiFi
- Maximální zisk antény: 2,2 dBi
- VSWR antény: < 1 : 2,5

Komunikační protokoly

Podporované protokoly:

TCP, UDP, IPv4, ARP, ICMP, DHCP, DNS HTTP(S), SMTP, Modbus TCP, SNMP
Web server:

HTTP(S) 1.1 server, HTTPS s TLS verze 1.2

Až tři klienti připojení současně k web serveru

Přesměrování portu 80 na TCP port 81 (HTTP) či 443 (HTTPS)

Podporované prohlížeče: Mozilla Firefox, Google Chrome, Microsoft Edge. Internet Explorer není podporován.

SMTP – E-mail:

Podporovaná autentizace – AUTH LOGIN

Podporované šifrování – TLS, STARTTLS

OAuth 1.0 nebo 2.0 není podporováno

Cloud protokol:

HTTP(S) POST s JSON daty

HTTP(S) 1.1 klient, HTTPS s TLS verze 1.2

Zálohovaná paměť pro 2240 sad hodnot

Modbus TCP protokol:

Podpora připojení dvou klientů současně

JSON a XML pres http server:

Čtení měřených hodnot přes HTTP GET na portu 80

SNMP protokol:

Podporované verze – SNMPv1, SNMPv2c, SNMPv3

Částečná podpora MIB-II tabulky (RFC1213) – System node

SNMPv3 autentizace – MD5, SHA

SNMPv3 šifrování – DES, AES128

SNMPv3 je funkční do 30 s od zapnutí přístroje

SNMP Trapy nejsou podporovány

Parametry vstupů přístrojů

W0710

Měřené hodnoty:

Teplota ze sondy, která je součástí dodávky

Rozsah:

-30 °C až +60 °C

Přesnost:

±0,4 °C

Doba odezvy:

t90 < 1 min (teplotní skok 20 °C, při proudění vzduchu 1 m/s)

Rozlišení:

0,1 °C (ADC rozlišení 16 bit)

Doporučený interval kalibrace:

2 roky

W0711

Měřené hodnoty:

Teplota z externí sondy COMET Pt1000/C

Rozsah:

-90 °C až +260 °C (čidlo Pt1000/3850 ppm)

-150 °C až +600 °C (pro modifikaci W0711F)

Měřící proud ~250 µA

Přesnost vstupu (bez přesnosti sond):

±0,2 °C v rozsahu pod +100 °C

±0,2 % z měřené hodnoty v rozsahu nad +100 °C

Celková přesnost měření přístroje s připojenou sondou se skládá z přesnosti vstupu a přesnosti připojené sondy.

Připojení sondy:

Dvouvodičové připojení sondy s možností kompenzovat odchylku způsobenou odporem kabelu. Připojení je realizováno pomocí CINCH (RCA) konektoru. Zapojení konektoru je popsáno v *Dodatku 2*.

Doporučená maximální délka kabelu Pt1000/C sondy je 15 m. Délka kabelu sondy nesmí překročit 30 m. Důrazně se doporučuje použít stíněný kabel sondy.

Doba odezvy:

Je dána dobou odezvy použité sondy

Rozlišení:

0,1 °C (ADC rozlišení 16 bit)

Doporučený interval kalibrace:

2 roky

W0741

Měřené hodnoty:

4x teploty ze sond COMET Pt1000/C

Rozsah:

-90 °C až +260 °C (čidlo Pt1000/3850 ppm)

-150 °C až +600 °C (pro modifikaci W0741F)

Měřící proud ~250 µA

Přesnost vstupu (bez přesnosti sond):

±0,2 °C v rozsahu pod +100 °C

±0,2 % z měřené hodnoty v rozsahu nad +100 °C

Celková přesnost měření přístroje s připojenou sondou se skládá z přesnosti vstupu a přesnosti připojené sondy.

Připojení sondy:

Dvouvodičové připojení sondy s možností kompenzovat odchylku způsobenou odporem kabelu. Připojení je realizováno pomocí CINCH (RCA) konektoru. Zapojení konektoru je popsáno v *Dodatku 2*.

Doporučená maximální délka kabelu Pt1000/C sondy je 15 m. Délka kabelu sondy nesmí překročit 30 m. Důrazně se doporučuje použít stíněný kabel sondy.

Doba odezvy:

Je dána dobou odezvy použité sondy

Rozlišení:

0,1 °C (ADC rozlišení 16 bit)

Doporučený interval kalibrace:

2 roky

W3710

Měřené hodnoty:

Teplota a relativní vlhkost ze sondy, která je součásti dodávky. Ostatní vlhkostní veličiny jsou vypočteny z měřené teploty a relativní vlhkosti.

Rozsah:

Teplota: -30 °C až +60 °C

Relativní vlhkost: 0 %RH až 95 %RH bez kondenzace

Rosný bod: -60 °C až +60 °C

Rozlišení:

Teplota: ±0,4 °C

Relativní vlhkost:

- přesnost senzoru: ±1,8 %RH při teplotě 23 °C a relativní vlhkosti v rozsahu 0 %RH až 90 %RH
- hystereze: < ±1,0 %RH
- nelinearita: < ±1,0 %RH

Rosný bod:

±1,5 °C při okolní teplotě T < 25 °C a vlhkosti RH > 30 %RH.

Detailnější informace je možné nalézt v grafu v *Příloze 1*. Podrobné informace o dalších vypočtených vlhkostních veličinách jsou dostupné tamtéž.

Doba odezvy (při proudění vzduchu ~1 m/s):

Teplota: t90 < 1 min pro teplotní skok 20 °C

Relativní vlhkost: t90 < 6 s pro skok 60 %RH pro konstantní T

Rozlišení:

Teplota a rosný bod: 0,1 °C

Relativní vlhkost: 0,1 %RH

Doporučený interval kalibrace:

1 rok

W3711

Měřené hodnoty:

Teplota a relativní vlhkost z externí Digi/E sondy. Ostatní vlhkostní veličiny jsou vypočteny z měřené teploty a relativní vlhkosti.

Přesnost, rozsah a doba odezvy:

Viz manuál k použité Digi/E sondě

Připojení sondy:

Připojení Digi/E sondy je realizováno pomocí 4pinového konektoru M8 ELKA 4008V. V *Příloze 3* je popsáno zapojení pinů konektoru.

Maximální délka kabelu Digi/E sondy nesmí přesáhnout 15 m.

Rozlišení:

Teplota a rosný bod: 0,1 °C

Relativní vlhkost: 0,1 %RH

Doporučený interval kalibrace:

1 rok (dle použité sondy)

W3721

Měřené hodnoty:

2x teplota a relativní vlhkost z externích Digi/E sond. Ostatní vlhkostní veličiny jsou vypočteny z měřené teploty a relativní vlhkosti.

Přesnost, rozsah a doba odezvy:

Viz manuál k použité Digi/E sondě

Připojení sondy:

Připojení Digi/E sondy je realizováno pomocí 4pinového konektoru M8 ELKA 4008V. V *Příloze 3* je popsáno zapojení pinů konektoru.

Maximální délka kabelu Digi/E sondy nesmí přesáhnout 15 m.

Rozlišení:

Teplota a rosný bod: 0,1 °C

Relativní vlhkost: 0,1 %RH

Doporučený interval kalibrace:

1 rok (dle použité sondy)

W3745 ____

Měřené hodnoty:

Teplota a relativní vlhkost z externí Digi/E sondy a tři teploty z externích sond COMET Pt1000/C. Ostatní vlhkostní veličiny jsou vypočteny z měřené teploty a relativní vlhkosti.

Digi/E sonda a její rozsah, přesnost a doba odezvy:

Viz manuál k použité Digi/E sondě

Digi/E připojení sondy:

Připojení Digi/E sondy je realizováno pomocí 4pinového konektoru M8 ELKA 4008V. V *Příloze* 3 je popsáno zapojení pinů konektoru.

Maximální délka kabelu Digi/E sondy nesmí přesáhnout 15 m.

Pt1000/C sondy rozsahy:

-90 °C až +260 °C (čidlo Pt1000/3850 ppm)

-150 °C až +600 °C (pro modifikaci W3745F)

Měřící proud ~250 µA

Pt1000/C přesnost vstupu (bez přesnosti sond):

±0,2 °C v rozsahu pod +100 °C

±0,2 % z měřené hodnoty v rozsahu nad +100 °C

Celková přesnost měření přístroje s připojenou sondou se skládá z přesnosti vstupu a přesnosti připojené sondy.

Pt1000/C sondy doba odezvy:

Je dána dobou odezvy použité sondy

Pt1000/C sondy připojení:

Dvouvodičové připojení sondy s možností kompenzovat odchylku způsobenou odporem kabelu. Připojení je realizováno pomocí CINCH (RCA) konektoru. Zapojení konektoru je popsáno v *Dodatku 2*.

Doporučená maximální délka kabelu Pt1000/C sondy je 15 m. Délka kabelu sondy nesmí překročit 30 m. Důrazně se doporučuje použít stíněný kabel sondy.

Rozlišení:

Teplota a rosný bod: 0,1 °C

Relativní vlhkost: 0,1 %RH

Doporučený interval kalibrace:

1 rok (dle použité sondy)

W4710

Měřené hodnoty:

Teplota a relativní vlhkost ze sondy, která je součásti dodávky. Koncentrace CO₂ a barometrický tlak jsou měřeny interními čidly. Ostatní vlhkostní veličiny jsou vypočteny z měřené teploty a relativní vlhkosti.

Rozsah:

Teplota: -30 °C až +60 °C

Relativní vlhkost: 0 %RH až 95 %RH bez kondenzace

Barometrický tlak: 700 hPa až 1100 hPa

CO₂ koncentrace: 0 až 5000 ppm (volitelně 0 až 10000 ppm)

Rosný bod: -60 °C až +60 °C

Přesnost:

Teplota: ±0,4 °C

Relativní vlhkost:

- přesnost senzoru: ±1,8 %RH při teplotě 23 °C a relativní vlhkosti v rozsahu 0 %RH až 90 %RH
- hystereze: < ±1,0 %RH
- nelinearita: < ±1,0 %RH

Barometrický tlak: ±1,3 hPa při teplotě 23 °C

CO₂ koncentrace ve vzduchu:

- 50 + 0,03 * měřená hodnota [ppm CO₂ při 23 °C a 1013 hPa]
- teplotní závislost v rozsahu -20 až 45 °C je typ. ± (1 + měřená hodnota / 1000) [ppm CO₂/°C]

Rosný bod:

±1,5 °C při okolní teplotě T < 25 °C a vlhkosti RH > 30 %RH.

Detailnější informace je možné nalézt v grafu v *Příloze 1*. Podrobné informace o dalších vypočtených vlhkostních veličinách jsou dostupné tamtéž.

Doba odezvy (při proudění vzduchu ~1 m/s):

Teplota: t90 < 1 min pro teplotní skok 20 °C

Relativní vlhkost: t90 < 6 s pro skok 60 %RH pro konstantní T

Barometrický tlak: t90 < 44 s

CO₂ koncentrace: t90 < 2 min

Rozlišení:

Teplota a rosný bod: 0,1 °C

Relativní vlhkost: 0,1 %RH

Barometrický tlak: 1 hPa

CO₂ koncentrace: 1 ppm

Doporučený interval kalibrace:

1 rok

W5714 _

Měřené hodnoty:

Koncentrace CO₂ ve vzduchu

Rozsah:

0 ppm až 5000 ppm (rozsah 0 ppm až 10000 ppm volitelně)

Přesnost:

50 + 0,03 * měřená hodnota [ppm CO₂ při 23 °C a 1013 hPa]

 teplotní závislost v rozsahu -20 až 45 °C je typ. ± (1 + měřená hodnota / 1000) [ppm CO₂/°C]

Doba odezvy (při proudění vzduchu ~1 m/s):

t90 < 2 min

Rozlišení:

1 ppm

Doporučený interval kalibrace:

5 let

W7710

Měřené hodnoty:

Teplota a relativní vlhkost ze sondy, která je součásti dodávky. Barometrický tlak z interního senzoru. Ostatní vlhkostní veličiny jsou vypočteny z měřené teploty a relativní vlhkosti.

Rozsah:

Teplota: -30 °C až +60 °C

Relativní vlhkost: 0 %RH až 95 %RH bez kondenzace

Barometrický tlak: 600 hPa až 1100 hPa

Rosný bod: -60 °C až +60 °C

Přesnost:

Teplota: ±0,4 °C

Relativní vlhkost:

- přesnost senzoru: ±1,8 %RH při teplotě 23 °C a relativní vlhkosti v rozsahu 0 %RH až 90 %RH
- hystereze: < ±1,0 %RH
- nelinearita: < ±1,0 %RH

Barometrický tlak: ±1,3 hPa při okolní teplotě 23 °C

Rosný bod:

 \pm 1,5 °C při okolní teplotě T < 25 °C a vlhkosti RH > 30 %RH.

Detailnější informace je možné nalézt v grafu v *Příloze 1*. Podrobné informace o dalších vypočtených vlhkostních veličinách jsou dostupné tamtéž.

Doba odezvy (při proudění vzduchu ~1 m/s):

Teplota: t90 < 1 min pro teplotní skok 20 °C

Relativní vlhkost: t90 < 6 s pro skok 60 %RH pro konstantní T

Barometrický tlak: t90 < 44 s

Rozlišení:

Teplota a rosný bod: 0,1 °C

Relativní vlhkost: 0,1 %RH

Barometrický tlak: 1 hPa

Doporučený interval kalibrace:

1 rok

Provozní a skladovací podmínky

Provozní teploty:

-30 až +60 °C (LCD displej viditelný v rozsahu -10 až +60 °C)

Provozní vlhkost:

0 %RH až 95 %RH bez kondenzace

Provozní barometrický tlak:

600 až 1100 hPa (u W4710, W5714 je rozsah 700 až 1000 hPa)

Provozní prostředí:

chemicky neagresivní

Skladovací teplota:

-30 až +60 °C

Skladovací vlhkost:

5 až 90 %RH

Mechanické vlastnosti

Rozměry (v x š x h):

93 x 81 x 32 mm bez připojených kabelů a sond

Hmotnost:

~ 120 g

Materiál skříňky:

Polykarbonát LEXAN™ EXL1434T

Krytí:

IP30

Vyřazení z provozu

V případě vyřazení přístroje mějte na paměti, že přístroj může obsahovat důvěrné informace, jako jsou např. hesla. Z toho důvodu je před odevzdáním přístroje do elektronického odpadu doporučeno provést *tovární nastavení*. V případě, že jsou v přístroji nahrány certifikáty pro WPA2-EAP zabezpečení, je vhodné tyto certifikáty smazat. To lze provést pomocí programu WiFiSensorUtility.

Pro vyřazení přístroje odpojte napájení a zlikvidujte přístroj jako elektronický odpad dle platné legislativy. Přístroj obsahuje primární lithiovou baterii s kapacitou 48 mAh.

Prohlášení o shodě

Přístroj je ve shodě s požadavky směrnice 2014/53/EU. Originál Prohlášení o shodě naleznete na stránkách výrobce www.cometsystem.cz.

Dodatky

Dodatek 1: Přesnost měření rosného bodu a ostatních vlhkostních veličin

Rosný bod

Přesnost:

±1,5 °C při okolní teplotě T < 25 °C a RH > 30 %RH

Rozsah:

Absolutní vlhkost

Přesnost:

±1,5 g/m³ při okolní teplotě T < 25 °C

Rozsah:

0 g/m³ až 130 g/m³

Specifická vlhkost *

Přesnost:

± 2 g/kg při okolní teplotě T < 35 °C

Rozsah:

0 g/kg až 130 g/kg

Směšovací poměr *

Přesnost:

± 2 g/kg při okolní teplotě T < 35°C

Rozsah:

0 g/kg až 150 g/kg

Specifická entalpie *

Přesnost:

± 3 kJ/kg při okolní teplotě T < 25°C

Rozsah:

0 kJ/kg až 450 kJ/kg

Humidex

Přesnost:

± 2,0 °C

Rozsah:

Index je relevantní, pokud je měřená teplota v rozsahu 21 °C až 43 °C a relativní vlhkost je vyšší než 20 %RH

* Vypočtené vlhkostní veličiny jsou závislé na barometrickém tlaku. U přístrojů, které nejsou vybaveny interním čidlem barometrického tlaku, je konstantní hodnota barometrického tlaku zadána v nastavení. Výchozí hodnota je 1013 hPa.

Dodatek 2: Zapojení konektoru sondy řady Pt1000/E

Pro Pt1000/C sondy je využíván CINCH (RCA) konektor. Zapojení sond pro přístroje W0711, W0741, W3745 je uvedeno níže.

Dodatek 3: Zapojení konektoru pro sondu Digi/E

Digi/E sondy jsou připojeny pomocí M8 ELKA 4008V konektoru. Zapojení vodičů na konektor pro W3711, W3721, W3745 je uvedeno na obrázku níže.

Dodatek 4: Volitelné napájení přes interní 5 V konektor

WiFi snímače mohou být napájeny pomocí interního +5 V konektoru namísto USB-C konektoru. Pro více informací kontaktuje technickou podporu.

Dodatek 5: Diagram funkce akustiky a LED signalizace

Na obrázku níže je zobrazen diagram fungování akustické signalizace WiFi snímačů. Zdrojem aktivace akustické signalizace mohou být jak alarmy od kanálu, tak systémové alarmy. Pro fungování akustické signalizace musí být funkce globálně povolena a musí být povolen zdroj alarmu. Ztlumení akustiky může být realizováno stiskem tlačítka SET na přístroji nebo vzdáleně z web stránek (pomocí software). Oba způsoby ztlumení jsou nezávisle konfigurovatelné.

Obrázek popisuje fungování optické LED signalizace u WiFi snímačů. LED signalizace může být aktivována ze dvou různých zdrojů. Může být aktivována jak od alarmů na kanálech, tak systémového alarmu. Aby byla LED signalizace funkční, je nutné ji globálně povolit a musí být povolen její zdroj. Funkce "ztlumení" není u LED signalizace dostupná.

Dodatek 6: Seznam portů

Protokol	Číslo portu	Použití
ТСР	80	HTTP port pro přesměrování. Port je též využíván pro čtení aktuálních hodnot přes soubory values.xml a values.json.
TCP	81	HTTP webserver
TCP	443	HTTPS webserver, pokud je zapnuté zabezpečení
TCP	502	Modbus TCP port (výchozí port)
TCP	10001	Komunikace s programem WifiSensorUtility (výchozí port)
UDP	5353	mDNS protokol
UDP	30718	Protokol využívaný pro vyhledání COMET přístrojů na síti
UDP	161	SNMP protokol

Tabulka obsahuje seznam příchozích portů WiFi snímačů.

Poznámka: ICMP Echo (ping) je u WiFi snímačů povoleno.

Dodatek 7: Testy s SMTP servery třetí strany

WiFi snímače s firmware verzí 10.0.6.0 byly testovány s následujícími e-mail službami. Seznam je platný k datu jeho vytvoření (24. duben 2022). Ne všechny služby mohou být dostupné ve všech zemích. Protože tyto služby jsou poskytované třetí stranou, nemůžeme garantovat správnou funkci a kompatibilitu naších přístrojů.

Služba	Adresa SMTP serveru	Port	Šifrování	Poznámka	
Gmail smtp.gmail.com		465	TLS	Nepodporováno	
		587	STARTTLS	Pozn. 1	
Outlook.com	smtp-mail.outlook.com	587	STARTTLS	Pozn. 2	
AOL Mail smtp.aol.com		465	TLS	Pozn. 3	
		587	STARTTLS		
Yahoo! Mail	smtp.mail.yahoo.com	465	TLS	Pozn. 4	
		587	STARTTLS		
GMX.com	mail.gmx.com	465	TLS	Pozn. 5	
		587	STARTTLS		
Seznam.cz	smtp.seznam.cz	25	No		
		465	TLS		
		587	STARTTLS		
Centrum.cz	smtp.centrum.cz	25	No		
		465	TLS		
		587	STARTTLS		

Pozn. 1: Podpora pro TLS a STARTTLS šifrování s Gmail SMTP serverem byla zrušena ke dni 30. května 2022.

Pozn. 2: V případě, že je Outlook.com používán v rámci firemního Office 365, funkce může být deaktivována administrátorem.

Pozn. 3: Pro odesílaní e-mailů přes AOL SMTP server, je nutné povolit "App Password" (Options / Account Info / Account Security / Other ways to sign in / Generate and manage app passwords).

Pozn. 4: Pro odesílaní e-mailů přes Yahoo SMTP server, je nutné povolit "App Password" (Account Info / Account Security / Other ways to sign in / Generate and manage app passwords).

Pozn. 5: Pro odesílaní e-mailů přes GMX SMTP server, funkce musí být povolena v nastavení E-mailu (E-mail / Settings / POP&IMAP / Enable access to this account via POP3 and IMAP).

Dodatek 8: Seznam dostupných modifikací

Seznam dostupných modifikací WiFi snímačů, které je možné objednat.

Modifikace	Objednací kód
SMA anténní konektor místo neodnímatelné antény	W0710Q, W0711Q, W0741Q, W3710Q, W3711Q, W3721Q, W3745Q, W4710Q, W5714Q, W7710Q
Vyšší měřící rozsah pro Pt1000 vstupy (-150 °C až +600 °C) místo standardního rozsahu (-90 °C až +260 °C)	W0711F, W0741F, W3745F
Rozsah měření koncentrace CO ₂ 0 až 10000 ppm místo standardního rozsahu 0 až 5000 ppm	W5714 / 10000 ppm, W4710 / 10000 ppm

Dodatek 9: Ověřené WPA2-EPA zabezpečení s FreeRADIUS

Tabulka níže obsahuje seznam EAP metod ověřených s FreeRADIUS serverem verze 3.0.21.

EAP metoda	CA soubor	Klientský certifikát	Poznámka
EAP-TLS	ano	ano	Pozn. 1,
EAP-TTLS-TLS	ano	ano	F 0211. 2
EAP-TTLS-MSCHAPv2	ano	ne	Pozn. 2,
EAP-PEAP0-MSCHAPv2	ano	ne	P0211. 3
EAP-PEAP0-PSK	ano	ne	
EAP-FAST-AUTH-PROVISIONING	ne	ne	Pozn. 4

Pozn. 1: Je potřeba povolit TLS 1.0 v nastavení FreeRADIUS serveru (ve výchozím nastavení je povoleno TLS 1.1 a TLS 1.2). Autentizace klienta vůči serveru se provádí pomocí klientského certifikátu a privátního klíče. Ty musejí být nahrány do WiFi snímače v DER formátu. Soubory ve formátu PEM nebo p12 nejsou podporovány. Pro konverzi mezi formáty certifikátů může být použito OpenSSL. Nastavení identity pro metody EAP-TLS je nezbytné. Pokud identita nebyla poskytnuta správcem sítě, může být použit libovolný text. Heslo není povinné.

Pozn. 2: WiFi snímač ověřuje autentizační server vůči CA souboru. Tento soubor je potřeba nahrát do WiFi snímače pro všechny EAP metody s výjimkou metod EAP-FAST. Platnost CA souboru je ověřována podle času v přístroji. Je tedy nutné se ujistit, že přístroj má nastaven správný čas. Ověřování vůči CA souboru je možné deaktivovat v nastavení přístroje. Tento přístup však není z bezpečnostních důvodů doporučen.

Pozn. 3: EAP metody, u kterých se nevyužívá certifikát a privátní klíč. Pro autentizaci k RADIUS serveru se využívá identita a heslo.

Pozn. 4: Cisco EAP-FAST metody nevyužívají certifikát, privátní klíč ani CA soubor. Pro autentizaci je využívána identita a heslo.

Dodatek 10: Struktura menu nastavení

Struktura menu nastavení WiFi snímačů je následující. Struktura se může lišit dle modelu přístroje.


```
Protokoly
   -E-mail
      —E-mail zapnut
      -SMTP
         -Adresa SMTP serveru
         -SMTP port
         -SMTP autentizace
         -Heslo
        L_Způsob šifrování
      -Adresa odesílatele e-mailu
      -Příjemci
         —Příjemce 1
         —Příjemce 2
        Příjemce 3
Příjemce 4
      -Type e-mailu
      -Interval opakovaných alarmových e-mailů
      -Opakovaný report
         —Interval opakovaných reportů
—Příjemce 1
         -Příjemce 3
        Příjemce 4
   -Modbus
      -Modbus zapnut
     Modbus port
   -Vision software
     -Port pro Vision software
   HTTP server
     LJSON a XML
    -SNMP
      -Mód SNMP
      -Community pro čtení
      —Uživatelské jméno
      -Autentizace
      —Šifrování
     Umístění systému
Cloud
  -Mód Cloud připojení-COMET Cloud
    Asynchronní zprávy
Interval zasílaní
  -Mód Cloud připojení-COMET Database / Uživ. server
    -Asynchronní zprávy
    —Paměť vypnuta
     -Interval zasílaní
    L_URL pro server
```

Historie verzí dokumentu

Verze dokumentu	Datum	Poznámky
I-WFS-Wx7xx-02	Květen 2022	Úvodní překlad do českého jazyka. Dokument odpovídá anglické verzi IE- WFS-Wx7xx-08.

Poznámka: Čísla stránek se mohou mezi různými verzemi dokumentu lišit.